State of the Practice for Stormwater Quality Master Planning

FSA 2021 Annual Conference Friday, June 25, 2021 11:00 AM to 11:45 AM

Steven Peene, PhD Water Resources Principal

Mark Ellard, PE, CFM, D.WRE, ENV SP Senior Principal, Water Resources

> Geosyntec^D consultants

Presentation Outline

- Identifying Hot Spots
 - Approach
 - Impairment/TMDL/BMAP
 - Data Analyses
 - Pollutant Loading
 - Opportunity
- Restoration Strategies
 - Stormwater Inventory
 - BMP Planning / Siting
 - Structural BMPs
 - Non-Structural BMPs
 - BMP Controls
 - Future Climate Impacts

Projects Around Florida

Geosyntec^D

Identifying "Hot Spots"

- Approach
- Identifying Impairments/TMDLs/BMAPs
- Water Quality Data Analyses
- Pollutant Loading
- Opportunity

State of the Practice for Stormwater Quality Master Planning

Identifying "Hot Spots" – Approach

Identifying "Hot Spots"

- Approach
- Identifying Impairments/TMDLs/BMAPs
- Water Quality Data Analyses
- Pollutant Loading
- Opportunity

Identifying "Hot Spots" – Impairments/TMDLs/BMAPs

Geosyntec[▷]

Identifying "Hot Spots"

- Approach
- Identifying Impairment TMDLs/BMAPs
- Water Quality Data Analyses
- Pollutant Loading
- Opportunity

State of the Practice for Stormwater Quality Master Planning

Identifying "Hot Spots" – Water Quality Data Analyses

Geosyntec^D

Identifying "Hot Spots"

- Approach
- Identifying Impairments/TMDLs/BMAPs
- Water Quality Data Analyses
- Pollutant Loading
- Opportunity

Identifying "Hot Spots" – Pollutant Loading

Geosyntec[▷]

State of the Practice for Stormwater Quality Master Planning

Identifying "Hot Spots" – Pollutant Loading

Geosyntec^D

Identifying "Hot Spots" – Pollutant Loading

consultants

Identifying "Hot Spots"

- Approach
- Identifying Present Impairment Status
- Water Quality Data Analyses
- Pollutant Loading Analyses and Land Use
- Opportunity

Identifying "Hot Spots" – Opportunity

Geosyntec^D consultants

Restoration Strategies

- Stormwater and BMP Inventory
- Large Scale BMP Planning / Siting
- Structural BMP Types, Benefits, and Challenges
- Non-Structural BMP Types and Challenges
- Real Time / Active BMP Controls
- Future Climate Impacts

Restoration Strategies – Stormwater and BMP Inventory

Drainage Infrastructure

• Public and private

Geosyntec[>]

Restoration Strategies – Stormwater and BMP Inventory

Orange County Stormwater Comprehensive Structural Inventory (CSI)

NPDES Permit Requirement

Geosyntec Consultants	COVERNMENT GOVERNMENT	
Comprehensive Structural Inve	entory Plan	
for Stormwater Infrastructure		
Orange County NPDES MS4 Permit	1.	Major out
Prenared for	2.	Detention
Orange County – Environmental Protection Division 3165 McCrory Place, Suite 200 Orlando, FL 32803	3.	systems Primary ca
and	4.	Pipes / cul
Orange County – Public Works Department 4200 South John Young Parkway Orlando, FL 32839	5. 6.	Ditches / o Pollution o
Prepared by:	7.	Underdrai
Geosyntec Consultants, Inc. 3504 Lake Lynda Dr, Suite 155 Orlando, FL 32817	8. 9.	Exfiltration Dry retent
and	10.	Dry deten
EPIC Engineering and Consulting Group, LLC 1511 East State Road 434, Suite 3033 Winter Springs, FL 32708	11.	Wet deter
Project Number: FW3787	13	Curb inlet
November 23, 2020	14	Pumn stat
County Contract Y18-900B County PO# C18900B020	14. 15. 16.	Drain well Channel co
	17. 18.	Pond cont Inlets / cat

- falls
- with underdrain filter
- anals / secondary canals
- verts
 - conveyance swales
 - control structures
 - in filter systems
 - n / French drains
 - ion systems
 - tion systems
 - ntion systems
 - ction systems
 - baskets
 - ions

 - ontrol structures
 - rol structures
 - ch basin

Figure 4-1: CSIP Implementation Order of Orange County Watersheds

			Table 2-	5: Estima	ted Stori	mwater I	nfrastru	icture G	aps by W	atershed				
		-	_				Wate	rshed						
	Count Category ^{1,2}	Big Econ	Boggy Creek	Cypress Creek	Howell Branch	Lake Apopka	Lake Hart	Little Econ	Little Wekiva	Reedy Creek	Shingle Creek	St. Johns River	Wekiva River	T01.
	Estimated	23,860	27,613	10,892	1,814	12,998	5,220	36,636	11,105	12,015	39,690	1,616	24,902	208,3
	Inventoried	14,871	12,975	6,574	339	2,657	3,115	17,447	3,645	9,056	19,447	506	9,264	99,8
structures	Remaining ⁴	8,989	14,638	4,318	1.475	10,341	2,105	19,189	7,460	2.959	20,243	1,110	15,638	108,4
	% Complete	62%	47%	60%	19%	20%	60%	48%	33%	75%	49%	31%	37%	48%
	Estimated	19,748	23,940	8,953	1,564	10,685	4,358	31,375	9,536	10,462	34,566	1,294	20,696	177,1
ni.	Inventoried	11,147	10,826	5,619	259	2,203	2,648	14,312	3,017	7,916	16,715	268	7,940	82,8
ripes	Remaining ⁴	8,601	13,114	3,334	1,305	8,482	1,710	17.063	6.519	2,546	17,851	1.026	12,756	94,3
	% Complete	56%	45%	63%	17%	21%	61%	46%	32%	76%	48%	21%	38%	479
Secondary	Estimated	149	33	35	3	77	28	60	14	30	48	126	96	695
Canals,	Inventoried	111	17	7	0	12	4	24	6	3	24	13	8	23
Ditches,	Remaining ⁴	38	16	28	3	65	24	36	8	27	24	113	88	46
vales (miles)	% Complete	75%	52%	20%	16%	16%	1.3%	40%	42%	9%	50%	11%	9%	335
	Estimated	1.091	300	411	30	196	339	571	91	463	462	147	676	4,77
a. 16.9.5	Inventoried6	365	226	150	22	87	44	380	78	261	213	-41	201	2,06
Outtalls	Remaining ¹	726	74	261	8	109	295	191	13	202	249	106	475	2.70
	% Complete	33%	75%	36%	736%	44%	13%	67%	86%	56%	46%	28%	30%	438

Aerial imagery and Google Street View / Bing

- StreetSide
- Topographic Data (digital elevation models from the most recent watershed project)

									Сов	nty P	iscal	Vear								
									FY 23			FY 24								
	Q1	Q2	Q3	Q4	Q1	Q2		Q4		Q2		Q4	Q1	Q2	Q3	Q4		Q2	Q3	
Watershed	NPDES Pennit Cwle																			
	C	485			(59)		1		(SY2)	-	T	,	1993	-			(19¥4		C	\$7.5
	and the	Sar, Dre																		
	1.	1.1.	I.	L	1.	1.	i.	L	1.	1.	1.	1.	1.	1,	L.	1.	1.	L	100	in the
Implementation Planning						-7				-7			aver							
Shingle Creek						1							1.1							
Wekiva River								-				1					11.11			
Lake Apopka																				
Boggy Creek												1.71								
Little Econ													1000			1000				
Reedy Creek														-						
Cypress Creek									-			1.11			-		1-1			
Little Wekiva									-						-				-	
Big Econ																1			-	
Lake Hart						1	_	_			_						1	-	-	
Howell Branch																				
St. Johns River																				

Structur

Swales (m

Outfall

Geosyntec[>] consultants

Datasets that will be evaluated include the following:

- Existing County stormwater infrastructure GIS features (in format used by each of the County divisions)
- PW-SW Watershed Consultant GIS data from PW-SW's ongoing efforts to update the Shingle Creek Watershed Stormwater Management Master Plan.
- Survey / As Built Plans
- Construction plans
- Non-spatial data attributes and inspection forms/documents and pictures
- Factsheets from County's Data Management system (DM) which are hyperlinked with County's GIS layers.

Restoration Strategies – Stormwater and BMP Inventory

Pinellas County Stormwater Infrastructure Criticality Assessment

- Criticality Promotes Sustainability and Resilience
 - Guide strategies for proactive operation and maintenance
 - Prioritize long term rehabilitation of assets
 - Informs asset management plan and saves money over the long term
- Key Questions:
 - What are the factors that determine infrastructure criticality?
 - How to quantify criticality of a stormwater asset?
 - How to quantify criticality of stormwater assets relative to each other?
- Criticality = Likelihood of Failure x Consequences of Failure
 - Consequences (Impacts) Multiple Factors Considered
 - Financial
 - Social
 - Environmental
 - Injury, Illness, Death
 - Likelihood (Vulnerability, Probability) Multiple Factors Considered
 - Material / Condition
 - Age
 - Local Conditions
- Results provide ranking of assets for sustainable management
- Criticality can be applicable to any type of public infrastructure
 - Roads, water/wastewater, utilities, real estate

Analysis of Nearly 100,000 stormwater assets

Source: ASCE 2017 Infrastructure Report Card

GIS spatial weighting of assets

Criticality considered proximity to other sensitive assets and physical characteristics of asset

Geosyntec[▷]

Restoration Strategies

- Stormwater and BMP Inventory
- Large Scale BMP Planning / Siting
- Structural BMP Types, Benefits, and Challenges
- Non-Structural BMP Types and Challenges
- Real Time / Active BMP Controls
- Future Climate Impacts

State of the Practice for Stormwater Quality Master Planning

Restoration Strategies – Large Scale BMP Planning / Siting

Orange County Wekiva Watershed BMP Study

- Address TMDL BMAP goals
- Address surface, groundwater, baseflow impacts

Geosyntec[▶] consultants

Weiser Watershod

Project 6, Existin Retention Pond BAM Retrofit

COUNTY

State of the Practice for Stormwater Quality Master Planning

Restoration Strategies – Large Scale BMP Planning / Siting

Geosyntec^D

Restoration Strategies – Large Scale BMP Planning / Siting

Green Infrastructure (GI) Siting Tools

- Develop a rating and suitability framework for siting GI as part of the new GI program
 - Take into account where the COUNTY owns property or has right-of-way
 - TMDL /impaired water priority areas
 - Considering site suitability (land use, soils, water table, etc.)
- Leverage depth of GIS data resources to develop spatial analysis tool
- End result to provide framework and toolset to evaluate water quality benefits and suitability to conceptualize and prioritize future GI projects
- Produce initial list of ranked GI projects
- Top ranked projects are conceptualized as proof of concept
- Establish standardized water quality benefit evaluation procedures
- SOPs developed so COUNTY may easily replicate the results

Over 430,000 parcels plus R/W areas evaluated - Nearly 900 GI candidate sites identified

Restoration Strategies

- Stormwater and BMP Inventory
- Large Scale BMP Planning / Siting
- Structural BMP Types, Benefits, and Challenges
- Non-Structural BMP Types and Challenges
- Real Time / Active BMP Controls
- Future Climate Impacts

Traditional Stormwater Strategy

Centralized One Big Stormwater Facility for Attenuation and Treatment

Sensitive to

Groundwater

Table and

Tailwater

Elevation

Geosyntec[>]

Receiving Water

Alternative Stormwater Management

Green Infrastructure

Low Impact Design

Geosyntec[▷]

Retrofitting Existing BMPs

- Shingle Creek Pond
 - Expand pond
 - Add BAM
 - Treat baseflow with pump system

Restoration Strategies

- Stormwater and BMP Inventory
- Large Scale BMP Planning / Siting
- Structural BMP Types, Benefits, and Challenges
- Non-Structural BMP Types and Challenges
- Real Time / Active BMP Controls
- Future Climate Impacts

Restoration Strategies – Non-Structural BMP Types and Challenges

Lakeland Street Sweeping Study

- Characterize the street debris collected for street segments with different land use and tree canopy characteristics
 - Organic vs Inorganic
 - Nutrient content
- Evaluate and optimize the street sweeping practices in the City of Lakeland
 - Streets currently being swept (all public curbed streets)
 - Divided into several zones
- Optimize routes by zones and trips to minimize travel time and save fuel costs
- Optimization shows that the City can decrease the cost per pound of TN or TP removed utilizing new zones and frequencies
- Lakeland received approval from FDEP to use site specific nutrient concentration data in future NPDES reporting

Scenario	Cost (\$)	Curb Miles Swept (mi)	Mass of Street Debris Collected (lb)	TN (lb)	TP (lb)	TN (\$/lb)	TP (\$/lb)	TN (lb/\$1000)	TP (lb/\$1000)
NPDES	689,779	16,584	3,544,577	2578	1335	267.58	516.81	3.74	1.93
Existing	689,779	16,584	3,274,021	2501	1231	275.81	560.37	3.63	1.78
Alternative 1	689,779	16,584	3,271,511	6908	2508	99,85	275.04	10.02	3.64
Alternative 2	693,027	16,662	3,264,861	7110	2541	97.47	272.79	10.26	3.67
Alternative 3	681,164	16,377	3,252,778	7211	2553	94.47	266.79	10.59	3.75

Geosyntec P

Restoration Strategies – Non-Structural BMP Types and Challenges

NPDES ANNUAL REPORT Phase II MS4 Permit ID # FLR04E0 6 2

ropo untio	nting period t apated BMPs ment	out may be added to results from previous an s, measurable goals and schedules for future A	nual report periods. A summary of results is no reporting periods should be provided in this ser B	at expected for future reporting periods, but the tion
ID/I	BMP	BMP Description	Measurable Goal	Summary of Results
28	01	Public School Involvement	Engage CE pimary school students (K-3) with disaroom presentations (Change to Bloe – Gg), Stormwater Storytme – Gk 21, Approx 200 a suitednis Document & Report number of School classroom presentations, number of students and teacher critiques.	Rocievelt Elementary - grogrami (Da students) ELUE LIPF provides Rocievelt Elementary Lagoon haved hands on eco deviation through a courty Cooperative program in which that CiPy is spartner Californ Noven - 2019 Justicality Skidparents Californi Noven - 2019 Justicality Skidparents (Shi Chall Shi Californi Students) Number of teacher citiques - 3 Total Number Zements(Chaldren/Students: 337
28	03	Citizens Academy (All City Departments)	Introduce stormwater management to residents annually via Citzens Academy Document & Report number of citizens In each annual Citizens Academy.	Citizens Academy – Stormwater Section March 24, 2018 Number Citizens in Attendance - 25
28	04	Trash Bash Coordination	Coordinate with KBB (Keep Brevard Beautiful) & RLN PP (Indian River Lagoon National Istuary Program) in biannual Trashisah. Document & Report number of events and number of people taking part in events.	KBB/FL Coastal Cleanup – Oct14, 2037, 38 KDD/ Trainbach – April 7, 2020, 31 Chry of Cocca Bacch Sea Cat Planting – April 25,2017, 27 Surfrider Kac Cat Planting – Feb 2, 2020. Go No. Volunteers Trainba-Feb 2, 2020. Go
28	06	Be Floridian Now - BFN www.befloridiannow.org	Be Flondian Now's calling on all Flondians to help protect what makes Florid as of nr, our wateral Document & Report number of BFN Events in Gocca Baach. Document & Report the number of CBNNs and CB Facebook promotions/likes.	No. of BTAF Events in Carcoa Beach - o No. of BTAF Events in Carcoboke - o No. of BTAF Loweb visits - 4x (a.1% of angg total) BTA program/website was under development mod. Of sprofils for Carcob Sech. Number geven above and the sprofils for Carcob Sech. Number geven above and tom web analysis tools that bodte PC/Incibile device visits from within Corcob Beach.

Page 3 of 13 of Phase II MS4 Annual Report 4

Geosyntec[▷]

Restoration Strategies

- Stormwater and BMP Inventory
- Large Scale BMP Planning / Siting
- Structural BMPs types, Benefits, and Challenges
- Non-Structural BMPs Types and Challenges
- Real Time / Active BMP Controls
- Future Climate Impacts

Restoration Strategies – Real Time / Active BMP controls

Historic flooding after the 2009 storm

Ormond Beach Laurel Creek Basin Project

HURRICANE IRMA

Over the course of 3 days in September 2017, Hurricane Irma dropped nearly 9 inches of rain over central and eastern Florida. During this period, the Central Park Lakes received 190 ac-ft of inflow.

With Opti's real-time monitoring and forecast based control solution, the lakes were lowered in anticipation of the Hurricane, protecting residents from flooding.

Water Level During Irma

Flood Elevation: 5 ft

Peak Storm Level: 4 ft

Source: https://optirtc.com/assets/images/case-studies/CaseStudy-OrmondBeach.pdf?_cchid=04fa6d00dba4b155e4cba1dca6503120

Geosyntec^D

vs. traditional pump controls (red)

33

Restoration Strategies – Real Time / Active BMP controls

Stormwater Harvesting Site Layout

- Designed, installed, and monitored stormwater harvesting demonstration project at Orange County Public Works Maintenance Yard
- System to collect stormwater from maintenance building roof
- 10,300 gallons underground reservoir (PIPE-R)
- Provide water for spray trucks and jetter trucks
- Real-time control management of storage (OPTI)
- Monitor system for water quantity and water quality for 1 year
- Based on modeling results of this system the following benefits can be expected
 - Reduce potable water use by estimated 70,000 gallons per year
 - Makes the County more sustainable
 - Cost savings
 - Reduce stormwater leaving site by estimated 83% on an average annual basis
 - Reduce pressure on downstream drainage infrastructure
 - Improve water quality by reducing mass of pollutants discharged to surface water bodies
 - Increase groundwater recharge by estimated 46,000 gallons per year

Restoration Strategies – Real Time / Active BMP controls

Stormwater Harvesting System Description

- Main Components
 - Reservoir storage layer
 - Storage of harvested water
 - 10,300 gallons
 - Control box
 - Controls the water level in the reservoir layer
 - Will use real-time control technology (smart controls)
 - Hold on to water when it is needed
 - Release water when it is not needed (before rain event)
 - Location of pump
 - Drainfield overflow
 - Allows water to infiltrate prior to discharge to drainage infrastructure
 - Recharge the groundwater

Opti Platform

Geosyntec[>]

consultants

Restoration Strategies

- Stormwater and BMP Inventory
- Large Scale BMP Planning / Siting
- Structural BMPs types, Benefits, and Challenges
- Non-Structural BMPs Types and Challenges
- Real Time / Active BMP controls
- Future Climate Impacts

Existing and Forecasted Nuisance Flooding Conditions at **St. Augustine's** Maria Sanchez Lake based on FDEO's 2016 *Coastal Vulnerability Assessment*

Existing

24" SLR (2040s)

Geosyntec[▷]

consultants

Retention Pond / Bioretention / Rain Garden / Swale

Ground Surface

State of the Practice for Stormwater Quality Master Planning

Restoration Strategies – Future Climate Impacts

Ground Surface

Legend

<-1

-1 - 0 0 - 1

1 - 2

2 - 3 3 - 4

11 - 12

12 - 13

13 - 14 14 - 15

16 - 17 17 - 18

18 - 19

19 - 20

21 - 22 22 - 23

23 - 24 24 - 25 >25

Restoration Strategies – Future Climate Impacts

Broward County Future Conditions 100-Year Flood Community Map Project

- Goals:
 - Future resiliency for buildings and infrastructure in face of projected sea level rise and climate change
 - Reducing flood risk for development and redevelopment
 - Increasing sustainability of structures over lifespan
 - Incorporate future map into County code
- Approach and Advantages:
 - Integrated surface water groundwater hydrological model
 - Reflects future sea level rise, groundwater table rise, rainfall, and land use changes
 - Support updates for water management operations
 - Coordinate with 30 municipalities and 21 water control districts, SFWMD, and USGS
 - Develop Future Conditions Rainfall Intensity- Duration data
 - Consider ongoing FEMA coastal flood surge modeling efforts
- Develop regulatory future conditions 100-year flood elevation maps to establish finished floor elevations

Assessment Identifying Preliminary Risk Targets to Address Flood Resiliency

Geosyntec^D

St. Augustine Outfall Master Plan

- 1. Data collection
- 2. Comprehensive outfall atlas
- 3. Field confirmation of outfall data
- 4. Future resiliency and adaptation criteria evaluation
- 5. Outfall improvement assessment
- 6. Capital project prioritization
- 7. Master plan

Geosyntec^D consultants

Thank you!

Questions?

Geosyntec[>]