Watch out MS4s!

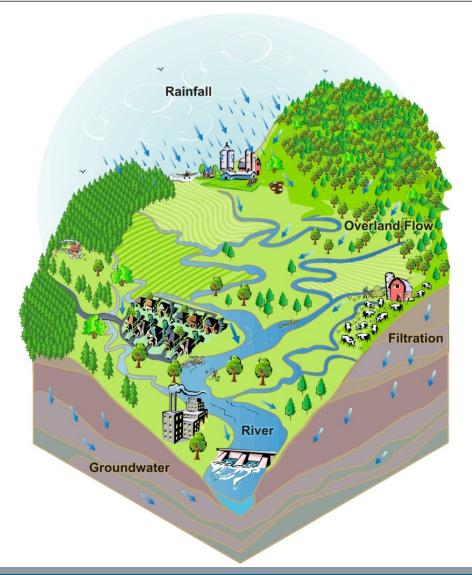
FSA 2021 Annual Conference Friday, June 25, 2021 11:00 AM to 11:45 AM

Janet Hearn, PE Associate Principal

Robert Potts
Senior Associate

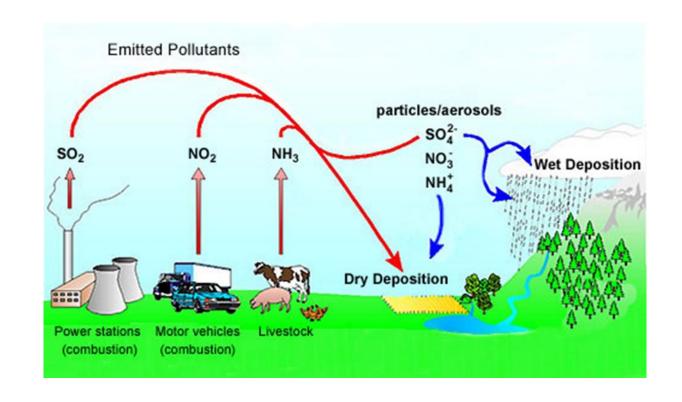
Presentation Overview

- BMAP Process, Nutrient Sources, and Load Allocations
- MS4 BMAP Obligations
- Costs of Atmospheric Deposition
- Alternative Treatment of Atmospheric Deposition
- Examples from Lower St. Johns River and Tampa Bay


Basin Management Action Plan (BMAP)

- BMAP Overview
 - A framework for restoring water quality
 - Developed by local stakeholders and agencies
 - Identifies projects, strategies, and actions designed to reduce pollution and meet established total maximum daily loads (TMDLs)
- Load Allocations (LA) vs. Waste Load Allocation (WLA)
 - LA: non-point source and background sources (i.e., atmospheric)
 - WLA: point sources (i.e., wastewater, MS4s)

BMAP Load Source Categories


- Controllable Loads
 - Urban stormwater (MS4s)
 - Agricultural operations
 - Wastewater treatment facilities
 - Septic systems
- Uncontrollable Loads
 - Natural lands
 - Groundwater
 - Atmospheric deposition

Anthropogenic Sources of Nutrients from Atmospheric Deposition

- Internal combustion engines (cars, trucks, ships, airplanes)
- Coal-fired power plants
- Industrial operations
- Biomass combustion
- Fertilizer production
- Agricultural operations

NPDES Phase I MS4 Permit Requirements

- 1. For water bodies within an adopted DEP TMDL and Basin Management Action Plan (BMAP).
 - a. BMAP Adopted:

In accordance with Section 403.067, F.S., NPDES permits must be consistent with the requirements of adopted TMDLs. Therefore, when a Basin Management Action Plan (BMAP) and/or an implementation plan for a TMDL for a water body into which the permitted MS4 discharges the pollutant of concern is adopted pursuant to Section 403.067(7), F.S., the MS4 operator must comply with the adopted provisions of the BMAP and/or implementation plan that specify activities to be undertaken by the permittee during the permit cycle.

NPDES Phase II MS4 Permit Requirements

B. Requirements for Total Maximum Daily Loads and/or Reasonable Assurance Plans to Address Impaired Waters Under Section 403.067, F.S. [40 CFR §122.34(c)]

The permittee shall address the implementation of Total Maximum Daily Loads (TMDL) and Reasonable Assurance Plans (RAP) in accordance with Section 403.067, F.S.

- 1. Basin Management Action Plans (BMAPs) and Reasonable Assurance Plans (RAPs)
- a. Adopted BMAPs or RAPs

If the permittee discharges stormwater to a waterbody within the boundary of a Department-adopted BMAP or RAP in accordance with Section 403.067, F.S., the permittee shall comply with the adopted provisions of the BMAP or RAP that specify activities to be undertaken by the permittee.

b. BMAPs and RAPs in Development

Upper Ocklawaha BMAP

Total Phosphorous (lb/yr)

	Possline	Controllable	Uncontrollable	Controll	able TP	Uncontroll	able TP		Total	MS4 % of	MS4
Waterbody	Baseline TP	TP	TP	MS4	Other	Atm	Other	TMDL	Reductions	Controllable	Required
						Deposition			Needed	TP	Reduction
Lake Harris	22,192	12,386	9,806	3,295	9,091	5,422	4,384	18,302	3,890	27%	1,035
Lake Denham	3,316	2,383	933	328	2,055	77	855	1,307	2,008	14%	277
Lake Roberts	306	203	104	73	130	37	6	220	86	36%	31
Marshall Lake	683	624	60	377	247	40	20	214	470	60%	284
Lake Yale	3,692	1,640	2,052	693	947	1,443	609	2,844	848	42%	358
Trout Lake	1,998	1,586	412	514	1,072	30	382	521	1,477	32%	479
Lake Carlton	478	291	187	121	170	118	69	195	283	42%	118
Upper Ocklawaha Basin	32666	19113	13553	5401	13712	7167	638	23604	9062	28%	2581

Total Phosphorous (lb/yr)

	Baseline	Controllable	Uncontrollable	Controll	able TP	Upcontrolla	able TP		Total	MS4 % of	MS4	AD % of	AD	Change of MS4
Waterbody	ТР	TP	TP	MS4	Other	Atm	Other	TMDL	Reductions	Controllable	Required	Controllable	•	Required
						Deposition			Needed	TP	Reduction	TP	Reduction	Reductions
Lake Harris	22,192	17,808	4,384	3,295	14,513	0	4,384	18,302	3,890	19%	720	30%	1,184	-315
Lake Denham	3,316	2,460	855	328	2,132	0		1,307	2,008	13%	268	3%	63	-9
Lake Roberts	306	240	66	73	168	0		220	86	30%	26	16%	13	-5
Marshall Lake	683	664	20	377	287	0		214	470	57%	267	6%	28	-17
Lake Yale	3,692	3,083	609	693	2,390	0		2,844	848	22%	191	47%	397	-168
Trout Lake	1,998	1,616	382	514	1,102	0		521	1,477	32%	470	2%	27	-9
Lake Carlton	478	409	69	121	288	0	·	195	283	30%	84	29%	82	-34
Upper Ocklawaha Basin	32,666	26,280	6,385	5,401	20,879	0	4,384	23,604	9,062	21%	2,025	27%	2,471	-556

Orange Creek BMAP

Total Phosphorous (lb/yr)

	Dasalina	Cantuallabla	Umaantuallahla	Controll	able TP	Uncontro	llable TP		Total	MS4 % of	MS4			
Waterbody	Baseline TP	TP	Uncontrollable TP	MS4	Other	Atm Deposition	Other	TMDL	Reductions Needed	Controllable TP	Required Reduction			
Newnans Lake	23,923	15,502	8,421	1,246	14,256	3,223	5,198	10,924	12,999	8%	1,045			
Lochloosa Lake	15,054	9,603	5,451	1,667	7,936	4,248	1,203	9,932	5,122	17%	889			
Orange Lake	27,296	20,993	6,303	945	20,048	2,941	3,362	15,262	12,034	5%	542			
	Baseline	Controllable	Uncontrollable	Controll	able TP	Uncontro	llable TP		Total	MS4 % of	MS4	AD % of	AD	Change of MS4
Waterbody	ТР	TP	TP	MS4	Other	Atm Deposition	Other	TMDL	Reductions Needed	Controllable TP	Required Reduction	Controllable TP	Required Reduction	Required Reductions
Newnans Lake	23,923	18,725	5,198	1,246	17,479	0	5,198	10,924	12,999	7%	865	17%	2,237	-180
Lochloosa Lake	15,054	13,851	1,203	1,667	12,184	0	1,203	9,932	5,122	12%	616	31%	1,571	-273
Orange Lake	27,296	23,934	3,362	945	22,989	0	3,362	15,262	12,034	4%	475	12%	1,479	-67

Total Nitrogen (lb/yr)

	Baseline	Controllable	Uncontrollable	Controll	able TN	Uncontro	llable TN		Total	MS4 % of	MS4			
Waterbody	TN	TN	TN	MS4	Other	Atm Deposition	Other	TMDL	Reductions Needed	Controllable TN	Required Reduction			
Newnans Lake	288,523	243,194	45,329	11,217	231,977	6,446	38,883	85,470	203,053	5%	9,366			
Lochloosa Lake	391,817	302,324	89,493	13,266	289,058	72,825	16,668	172,318	219,499	4%	9,631			
NA/ - A - ulo - ulo	Baseline	Controllable	Uncontrollable	Controll	able TN	Uncontro	llable TN	TMDI	Total	MS4 % of	MS4	AD % of	AD	Change of MS4
Waterbody	TN	TN	TN	MS4	Other	Atm Deposition	Other	TMDL	Reductions Needed	Controllable TN	Required Reduction	Controllable TN	Required Reduction	Required Reductions
Newnans Lake	288,523	249,640	38,883	11,217	238,423	0	38,883	85,470	203,053	4%	9,124	3%	5,243	-242
Lochloosa Lake	391,817	375,149	16,668	13,266	361,883	0	16,668	172,318	219,499	4%	7,762	19%	42,610	-1,870

Lake Jesup BMAP

Total Phosphorous (lb/yr)

	Basalina	Controllable	l la controllable	Control	lable TP	Uncontro	llable TP		Total	MS4 % of	MS4			
Waterbody	ТР	TP	Uncontrollable TP	MS4	Other	Atm	Other	TMDL	Reductions	Controllable	Required			
	IF	IP	IP	10134	Other	Deposition	Other		Needed	TP	Reduction			
Lake Jesup	68,724	59,124	9,600	24,217	34,907	9,600	0	41,821	26,903	41%	11,019			
				Control	lable TP	Uncontro	llahle TP		Total	MS4 % of	MS4	AD % of	AD	Change of
Waterbody	Baseline	Controllable	Uncontrollable	Control	iable II	Officontro	mable II	TMDL		Controllable		Controllable		MS4
waterbody	TP	TP	TP	MS4	Other	Atm	Other	HVIDE	Needed	TN	Reduction		Reduction	Required
				10134	Other	Deposition	Other		Needed	IIV	Reduction	IP .	Reduction	Reductions
Lake Jesup	68,724	68,724	0	24,217	44,507	0	0	41,821	26,903	35%	9,480	14%	3,758	-1,539

Total Nitrogen (lb/yr)

	Pacalina	Controllable	Uncontrollable	Controll	able TN	Uncontro	llable TN		Total	MS4 % of	MS4			
Waterbody	TN	TN	TN	MS4	Other	Atm	Other	TMDL	Reductions	Controllable	Required			
	IIN	IIV	IIV	10134	Other	Deposition	Other		Needed	TN	Reduction			
Lake Jesup	600,396	516,396	84,000	329,421	186,975	84,000	0	514,204	86,192	64%	54,984			
				Controll	able TN	Uncontro	llable TN		Total	MS4 % of	MS4	AD % of	AD	Change of
Waterbody	Baseline	Controllable	Uncontrollable					TMDL		Controllable		Controllable		MS4
Trace. Boar,	TN	TN	TN	MS4	Other	Atm	Other	22	Needed	TN	Reduction		Reduction	Required
					G tine:	Deposition	Cu iici		Necueu		neddetion	110	neadellon	Reductions
Lake Jesup	600,396	600,396	0	329,421	270,975	0	0	514,204	86,192	55%	47,291	14%	12,059	-7,693

FSA / UF 2011 Report

Conquetion and/on Decovery Method	Med	ian Cost (\$/lb)	
Separation and/or Recovery Method	TN	TP	PM
BMP Treatment Train ^a	935	32,600	26
FL Database for BMPs ^b	1,900	10,500	41
Screened Hydrodynamic Separator (HS) ^c	3,730	9,210	4
Serectica Hydrodynamic Separator (HS)	(1,280 - 14,860)	(3,170 - 36,680)	(1 - 13)
Baffled Hydrodynamic Separator (HS) ^c	3,020	7,450	3
Barried Hydrodynamic Separator (113)	(1,280 - 14,860)	(3,170 - 36,680)	(1 - 13)
Street Sweeping	165	257	0.10
Catch Basin Cleaning ^d	1,016	1,656	0.70

Costs to Stakeholders are Significant!

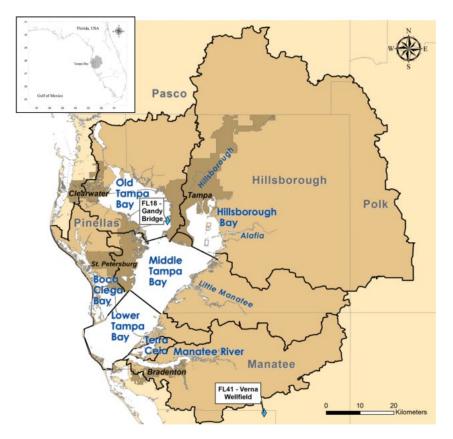
				Removal Co	st Estimates	
ВМАР	Parameter	Change (lb/yr)	Structural BMPs	Treatment Train	Hydrodynamic Separators	Street Sweeping
Lako losun	TN	7693	\$14,616,700.00	\$7,192,955.00	\$23,232,860.00	\$1,269,345.00
Lake Jesup	TP	1539	\$16,159,500.00	\$50,171,400.00	\$11,465,550.00	\$395,523.00
Nownans Lako	TN	242	\$459,800.00	\$7,889,200.00	\$1,802,900.00	\$62,194.00
Newnans Lake	TP	180	\$342,000.00	\$5,868,000.00	\$1,341,000.00	\$46,260.00
Lochloosa Lake	TN	1870	\$3,553,000.00	\$60,962,000.00	\$13,931,500.00	\$480,590.00
LOCIIIOOSa Lake	TP	270	\$513,000.00	\$8,802,000.00	\$2,011,500.00	\$69,390.00
Orange Lake	TP	67	\$127,300.00	\$2,184,200.00	\$499,150.00	\$17,219.00
Lake Harris	TP	315	\$598,500.00	\$10,269,000.00	\$2,346,750.00	\$80,955.00
Upper Ocklawaha	TP	556	\$1,056,400.00	\$18,125,600.00	\$4,142,200.00	\$142,892.00

What about the Indian River Lagoon?

- TMDL Development
 - Atmospheric load not considered significant
 - TMDL targets developed without atmospheric deposition (regression)
 - Reductions applied to the watershed load only
- BMAP Reductions Consistent with TMDL
- Are Atmospheric Loads Really Insignificant?

Nutrient Load from Atmospheric Deposition in the IRL

Indian River Lagoon BMAP and Segments	TN	TP
North		
IR1-3 (Project Zone A)	40%	13%
IR4+IR5 (Project Zone A)	35%	7%
IR6-7 (Project Zone B)	36%	7%
IR8+IR9-11 (Project Zone B)	27%	4%
Subtotal	34%	7%
Central		
IR12+IR13+IR14-15 (Project Zones A and SEB)	8%	1%
IR16-20, IR21 (Project Zone B)	7%	1%
Subtotal	7%	1%
Banana		
BR1-2 (Project Zone A)	37%	7%
BR3-5+BR7 (Project Zone B)	44%	8%
BR6 (Project Zone B)	25%	3%
Subtotal	38%	7%
Total	19%	3%


Strategies and Solutions

- Reimagine atmospheric deposition as a controllable source
 - Evaluate options for reducing atmospheric deposition
 - Periodically reassess atmospheric deposition to track progress
- Credit stakeholders for conversion to electric or hybrid fleets
- Include potential sources of atmospheric deposition (e.g., power plants, industry) as stakeholders
- Credit reductions in emissions

Examples

- Tampa Bay Study
- Lower St. Johns River Nutrient BMAP

Tampa Bay Region Atmospheric Chemistry Experiment (BRACE)

- BRACE Goals
 - Improve estimates of direct and indirect atmospheric N deposition to Tampa Bay
 - Apportion atmospheric N between local, regional, and remote sources
 - Assess impact of utility controls on N deposition to Tampa Bay
- Results and Conclusions
 - Atmospheric N a significant percent of annual loading to the bay
 - Direct: 14% to 32%
 - Total (direct + indirect): 35% to 70%
 - Dry deposition 67%; wet deposition 33%

Tampa Bay Region Atmospheric Chemistry Experiment (BRACE)

- Results and Conclusions
 - Mobile sources in the watershed contribute disproportionally greater N than power plant sources
 - Emissions within the watershed contributed 50% of N load to the watershed, 42% of load to the bay
 - Regulatory drivers (2002 to 2010) decreased atmospheric N by 49 metric tons
 - Control of atmospheric N both within and outside the watershed is important for maintaining the health of Tampa Bay

Lower St. Johns River Nutrient BMAP

- Seminole Electric stack improvements
 - Surface water discharge TN load reduction needed
 - Reduction required = 13,891 lb TN
 - Reduction achieved = 33,402 lb TN
- Excess credits of 19,511 lb TN allocated to urban stormwater stakeholders
- Savings to stakeholders?

Lower St. Johns River Nutrient BMAP

\$35 Million

Summary

- Atmospheric deposition is a controllable source of nutrients
- BMAPs should target atmospheric deposition for reduction
- MS4s should not be burdened with reductions for direct atmospheric deposition
- Increased cost of including direct atmospheric deposition in required reductions is significant

Questions?

