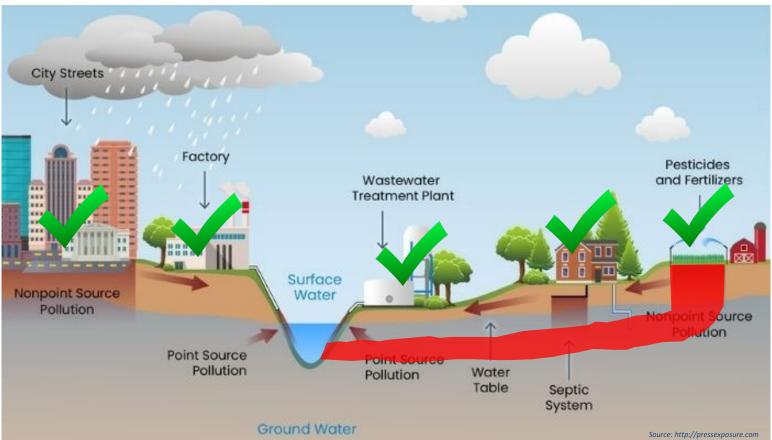
Geosyntec Consultants

Groundwater, Out of Sight, Out of Mind?

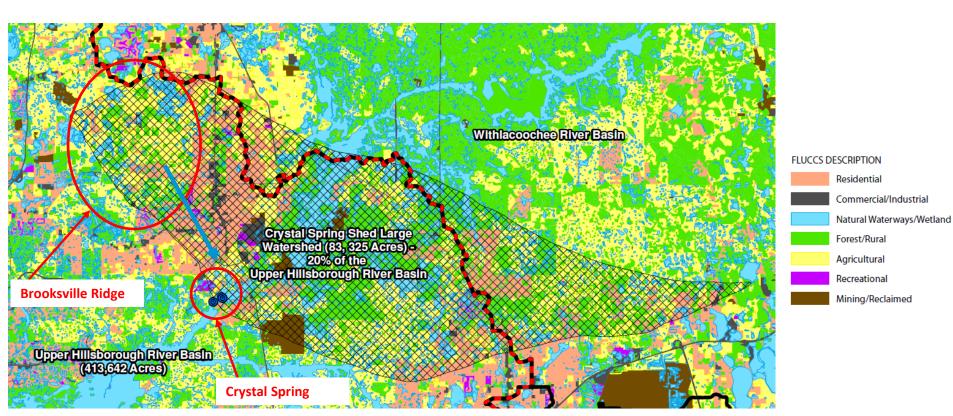
Florida Stormwater Association

Matt Wissler, P.G. and Mike Hardin, Ph.D., P.E., CFM June 17, 2022



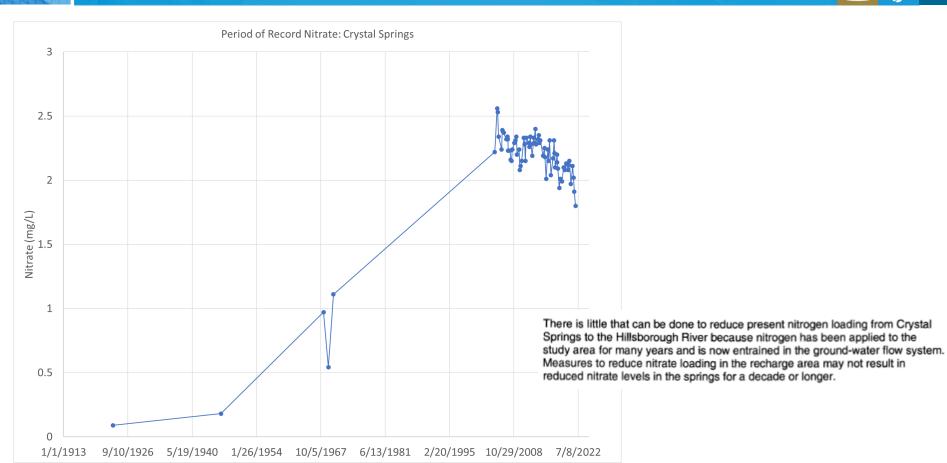
- What is the issue and who is affected?
- What is the role of groundwater in addressing our water quality compliance goals?
- How can we assess the nature and extent of nutrients in groundwater?
- What treatment techniques are available to address nutrient issues in groundwater?
- Case Studies

What is the Issue?



If your jurisdiction includes any of the land uses below and if you have water quality targets outlined in a Basin Management Action Plan (BMAP):

- Active and closed landfills
- Agricultural operation areas
- Biosolids application areas
- Wastewater effluent application/discharge areas
- Septic tanks
- Industrial/manufacturing (agrichemical, food/beverage, specialty chemical) facility discharge


Example of Continuing Groundwater Source

GEOSYNTEC CONSULTANTS

Example of Continuing Groundwater Source

How can we assess the nature and extent of nutrients in groundwater?

Several technologies are used to evaluate groundwater flow patterns and nutrient concentrations.

- Groundwater profiling using several techniques based on lithology:
 - Unconsolidated soils (sands/silts clays): direct push technology (DPT) drilling methods
 - Consolidated/lithified rock (limestone): sonic drilling methods

DPT Drilling and Sampling

DPT drilling allows for:

- Ideal for unconsolidated conditions only
- Collection of continuous soil samples
- Collection of high-resolution grab
 groundwater quality samples
- Discrete sampling intervals can be selected based upon the lithology observed

• Permanent well install

Sonic Drilling and Sampling

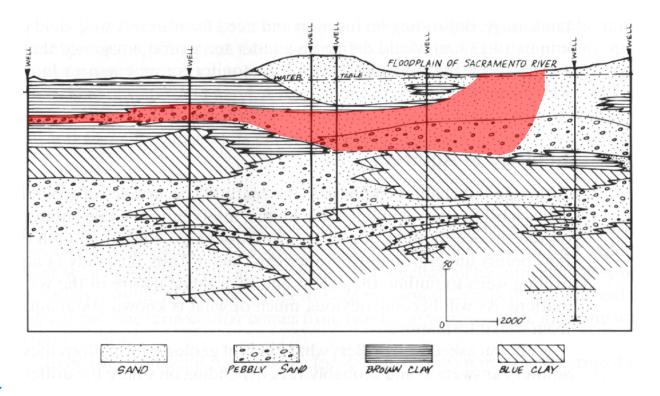
Sonic drilling allows for:

- Ideal for unconsolidated or lithified rock conditions
- Collection of continuous soil samples
- Pumping of discrete intervals to obtain water quality samples and to assess aquifer permeability
- Permanent well install in intervals of interest where aquifer permeability is high and elevated nutrient results are observed

Nutrient Groundwater Assessment

Objectives:

- Document the nature and extent of nutrients in groundwater;
- Identify level of heterogeneity present and locate primary flow paths; and
- Calculate the groundwater and nutrient flux



GEOSYNTEC CONSULTANTS

Nutrient Groundwater Assessment

Objectives:

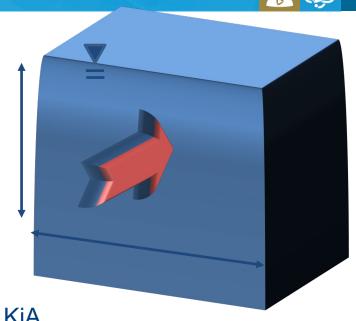
- Document the nature and extent of nutrients in groundwater;
- Identify level of heterogeneity present and locate primary flow paths; and
- Calculate the groundwater and nutrient flux

GEOSYNTEC CONSULTANTS

Groundwater and Nutrient Flux Calculation

Design Requirements

- 1. Define System Objective(s)
- 2. Conceptual Site Model
 - Target Contaminant
 Footprint
 - Lithology
 - Permeability
 - Groundwater Flow

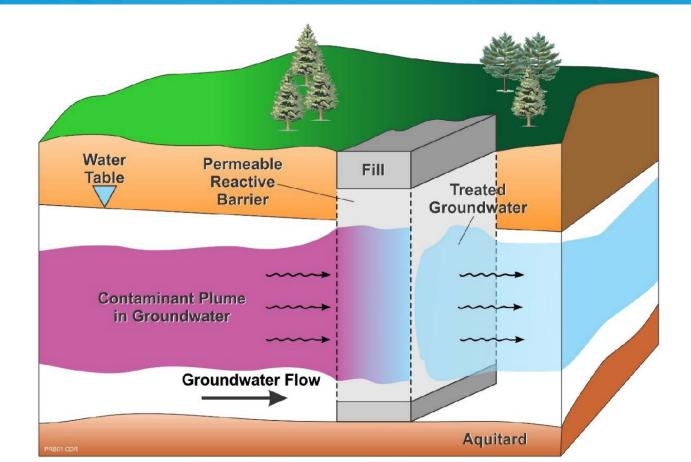

Design Approach Options

 Hand calculations (determine groundwater flux across a plane)

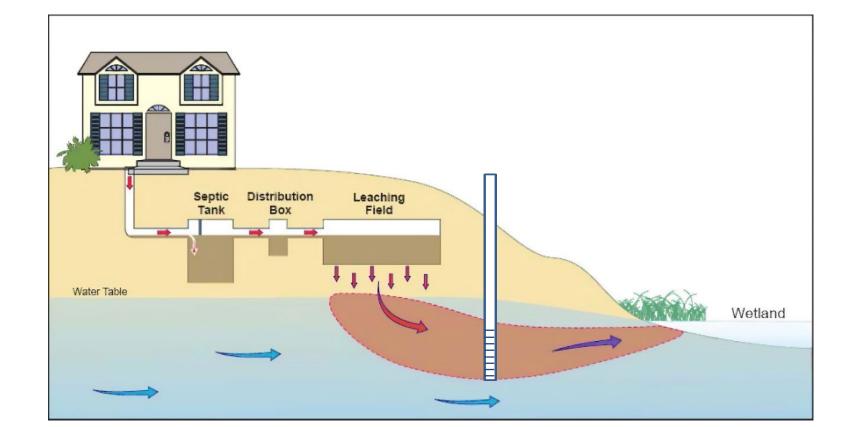
2. Groundwater modeling SYNTEC CONSULTANTS

Q = KiA

where: Q = groundwater flux K = hydraulic conductivity I = hydraulic gradient A = cross sectional area of aquifer

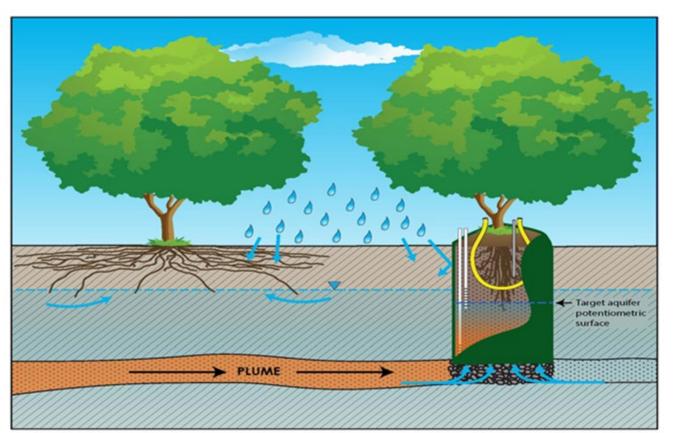


Objective is to treat nutrient pollution in groundwater with Best Management Practices (BMPs) prior to discharge into surface waterbodies.


- If groundwater is not intercepted prior to surface water discharge the cost of treatment and the loss of beneficial use can be significant.
- Completion of a feasibility study will identify suitable treatment option(s) which could include the approaches below:
- Permeable reactive barriers;
- Groundwater capture and treatment systems; and
- Phytotechnology including TreeWells[®]

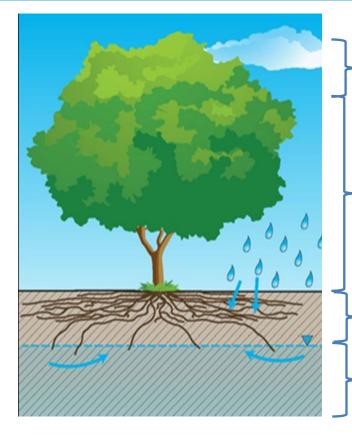
Permeable Reactive Barriers

Groundwater Capture and Treatment Systems



3

Engineered Phytotechnology: The *TreeWell*® System



- Patented by Applied Natural Sciences (ANS)
- Geosyntec is licensed for the design and use of *TreeWell*[®] systems
- Flow rate for each tree expected between 40-50 GPD at full tree maturity

Key Mechanisms of Phytoremediation

Phytovolatilization

VOČs volatilize off leaf surface (1,4-Dioxane, TCE)

Phytoextraction

Uptake and removal of contaminants through the roots Phytodegradation In Planta degradation (TCE, TNT) Phytosoguestration

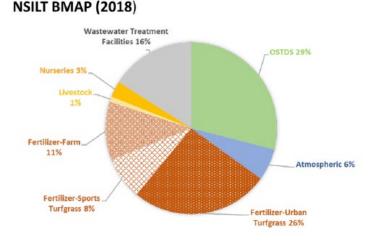
Phytosequestration

In Planta sequestration or accumulation (salts, metals/metalloids)

Rhizodegradation/Rhizofixation/Chelation Microbial degradation in the rhizosphere (salts, metals, organic contaminants)

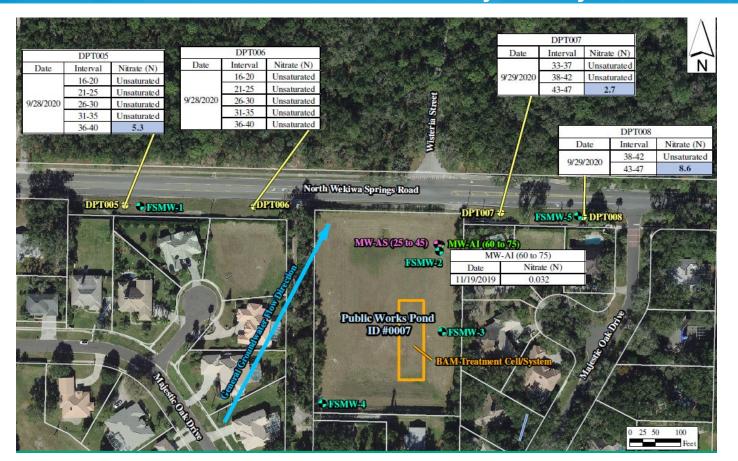
Chemical Reduction

Strongly reducing conditions (organic contaminants) Phytohydraulics

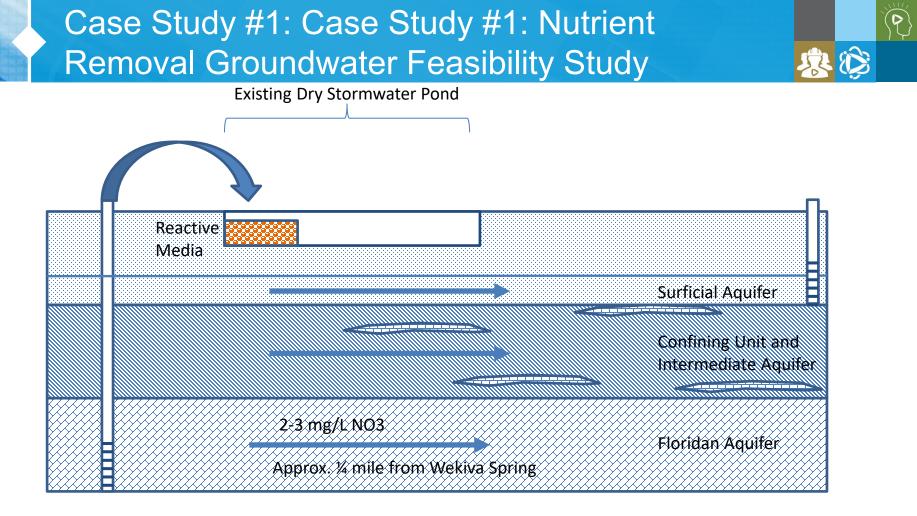

Groundwater uptake

Typically a combination of these mechanisms at work concurrently

GEOSYNTEC CONSULTANTS

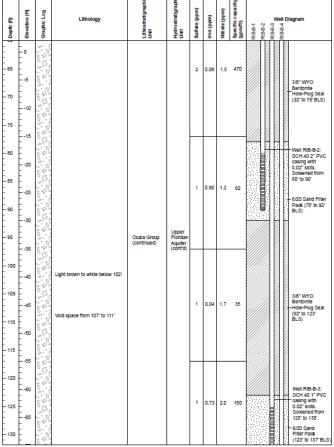

Case Study #1: Case Study #1: Nutrient Removal Groundwater Feasibility Study

- TN and TP water quality goals have been established for the Wekiva Spring BMAP and PFA
 - Current Wekiva Spring concentration ranging between approx. 0.75 and 1.5 mg/L NO3
 - Goal concentration of 0.238 mg/L NO3
- Stakeholders have goals for nutrient removal
- Orange County commissioned a feasibility study was conducted to identify project opportunities for nutrient removal
- Several groundwater projects were identified as opportunity for significant nutrient reduction



Case Study #1: Case Study #1: Nutrient Removal Groundwater Feasibility Study

 \mathbf{P}


GEOSYNTEC CONSULTANTS

Case Study #1: Nutrient Removal Groundwater Feasibility Study

Site conditions indicated:

- Heterogenous conditions noted during drilling
- High permeability zones coincided with high nutrient zones
- High yield supply of elevated nitrate groundwater was confirmed
- Downgradient, background and side gradient monitoring well system was installed
- Pre-construction groundwater monitoring underway
- Permitting evaluation and feasibility for system is in progress
- Potential to remove up to approx. 1,000 lbs of nitrate on an average annual basis

- City of Casselberry golf course permitted to receive 0.359 MGD of reclaimed water for irrigation with an average 6.6 mg/L NO3.
- Conditions of application per NPDES permit: surficial aquifer remains below 10 mg/L NO3
- Multiple loading sources (reclaimed water and golf course fertilizers)
- Aquifer characterization completed in 2017 using DPT methods and well installation
- Interval of elevated NO3 was identified between 15 and 24 ft below land surface and a flux of 90 GPD

- 15 TreeWell[®] units were planted in 2018.
- The TreeWell[®] system incorporated the integration of Bold and Gold biosorption-active media (BAM) into the soil backfill at half of the locations
- Monitoring data indicate average
 NO3 attenuation of between 5 and
 10 mg/L across planting area.
- BAM amended TreeWell[®] units encourage complete denitrification.
- This treatment technology offers a passive method that utilizes vegetation, specifically trees, to target groundwater with elevated nutrient concentrations.

GEOSYNTE

Basic Approach

- Borehole advanced to the horizon of interest
- Safety platform set
- Liner, aeration tubing other desired infrastructure are added
- Borehole is backfilled with topsoil and selected amendments
- Tree is then planted, and unit is finished

- **Primary Benefits**
 - Substitute for other treatment technologies
 - More effective than other treatment technologies in low permeability zones or thin aquifers
 - "Active" treatment
 - Low operation and maintenance costs

Secondary Benefits

- Aesthetic appeal to community
- "Enthusiastic" regulatory acceptance
- Defined as "Green and Sustainable" by USEPA

(ft)

16.6

(ft)

11.4

(sq ft)

13.9

Year 2

(sq ft)

56.6

(ft)

19.2

Year 1 Planting Tree Height Canopy **Tree Height** Canopy Tree Height Canopy

(sq ft)

42.4

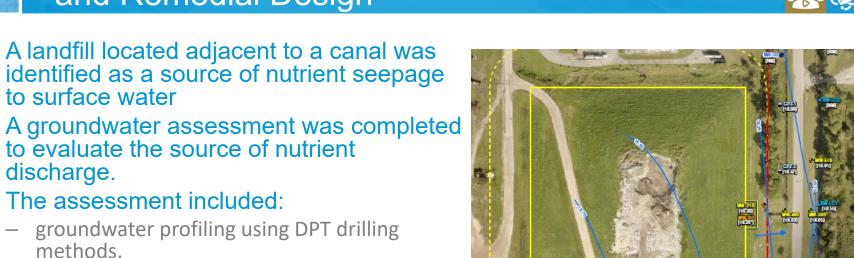
groundwater profiling using DPT drilling

field analysis of nutrients,

The assessment included:

- construction of permanent monitoring wells,
- slug testing,

methods,


discharge.

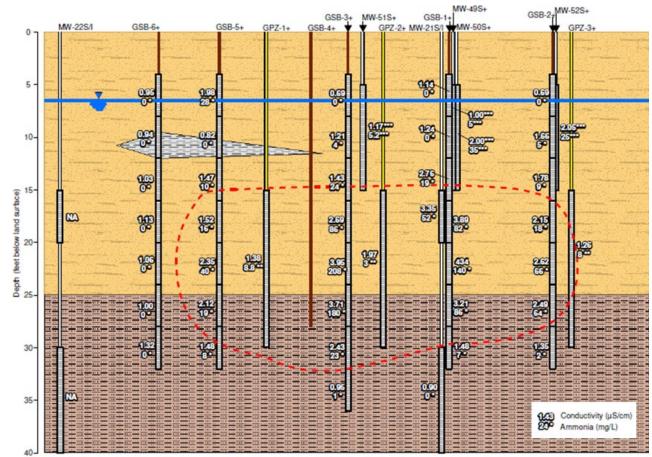
_

to surface water

quarterly groundwater and surface water monitoring

GEOSYNTEC CONSULTANTS

Case Study #3: Nutrient Flux Assessment and Remedial Design



- CPZ-3

Case Study #3: Nutrient Flux Assessment and Remedial Design

ې کې کې چې

- Groundwater and nutrient flux rates to the neighboring canal were calculated.
- A profile of nutrient concentrations and seepage velocities was completed downgradient of the suspected source areas

Case Study #3: Nutrient Flux Assessment and Remedial Design

- Pre-design for a TreeWell[®] system consisting of 135 units has been completed
- Located between the landfill and the canal
- The system will be capable of intercepting at least 5,400 GPD
- Passive system would be installed in lieu of an active remediation system needing continual operation and maintenance

Groundwater Gradient	Hydraulic Conductivity	Groundwater Velocity ⁽¹⁾		Groundwater Flux Rate		
(ft/ft)	(ft/day)	(ft/day)	(ft/year)	(ft ³ /day)	(gal/day)	
0.001	5.81	0.019	7.1	232	1,739	Minimun
0.002	9.05	0.060	22.0	724	5,415	Geomear
0.004	16.49	0.220	80.3	2,639	19,740	Maximun

Closing Thoughts

- Understand the importance of the lag of "legacy" groundwater pollutants when evaluating water quality goals
- Scope subsurface investigations assuming the subsurface is not uniform
- Implement high-resolution assessment to identify heterogeneity within aquifer systems in order to focus remedial efforts to high transmissivity zones
- Quantification of the groundwater/nutrient flux is required for a successful project
- Leverage state-of-the-art remediation techniques to address groundwater nutrient issues

Mitchell Katz, Ph.D. Orange County Environmental Protection Division

Kelly Brock, Ph.D., P.E., CFM, LEED AP, ENV SP City of Casselberry – Public Works Division

GEOSYNTEC CONSULTANTS

Geosyntec[▷] consultants

Questions??

Matthew Wissler, P.G. <u>mwissler@geosyntec.com</u> Mike Hardin, Ph.D., P.E., CFM <u>mhardin@geosyntec.com</u>