

Flood Forecasting Resiliency Model of the Upper St. Johns River Basin

Pete Singhofen (SLT)/Yanbing Jia (SJRWMD)

SJRWMD Flood Protection

- Provide flood protection to headwaters and downstream
- Operate and maintain federal and non-federal flood control projects
- Support other core missions

Upper St. Johns River Basin Project

- Project covers 160,000 acres and includes over 100 miles of levees and dozens of water control structures
- Multiple benefits including flood protection, water quality improvement, wetland enhancement, and reduction of freshwater discharge to Indian River Lagoon

🚄 STREAML

Project Functions

- Water Management Area
 - Stormwater storage
 - Water quality treatment
 - Agriculture irrigation
- Marsh Conservation Area
 - Stormwater storage
 - Wetland preservation
- Retention Area
 - Stormwater storage

4

Flood Forecasting Resiliency Model

- Initially developed by Streamline Technologies, Inc.
- Updated by SJRWMD
 - Refinement of model grid and representation of structures and operations
 - Model domain extended to downstream areas
 - Additional calibration and validation

Model Development

- Combination of ID and 2D Overland Flow
- > 2D Surface Region
 - Land Cover / Land Use
 - Soil Type
 - Lidar-based DEM
 - Nexrad Rainfall
 - Control Volumes
 - Weir Features

Model Development

- Combination of ID and 2D Overland Flow
- > 2D Surface Region
 - Land Cover / Land Use
 - Soil Type
 - Lidar-based DEM
 - Nexrad Rainfall
 - Control Volumes
 - Weir Features

Model Development

- Combination of ID and 2D Overland Flow
- > 2D Surface Region
 - Land Cover / Land Use
 - Soil Type
 - Lidar-based DEM
 - Nexrad Rainfall
 - Control Volumes
 - Weir Features

Model Calibration – Hurricane Irma 2017

Flood Forecasting Resiliency Model of the Upper St. Johns River Basin

9

Peak Stage Comparison – Hurricane Irma

Station Name	Peak Stage (ft, NAVD88)		Difference (Model-Observation)	
	Observation	Model	Stage (ft)	Time (days)
Fort Drum	28.3	28.2	-0.1	0
Blue Cypress Lake	24.5	24.5	0.0	-1
Kenansville Lake	24.8	24.6	-0.2	0
Blue Cypress Water Management Area	24.6	24.5	-0.1	-2
St. Johns Water Management Area	21.8	21.3	+0.1	0
Fellsmere Water Management Aera	20.7	20.6	-0.1	-2
Mary A	20.3	19.8	-0.5	0
Three Folks Marsh Conservation Area	19.5	19.2	-0.3	-
Lake Hell'n Blazes	18.8	18.2	-0.6	-1
Lake Washington	17.6	17.2	-0.4	+3
Lake Washington Weir	17.3	17.2	-0.1	-1
Jane Green	34.5	34.3	-0.2	-1
Taylor Creek Reservoir	44.0	43.7	-0.3	0

10 Flood Forecasting Resiliency Model of the Upper St. Johns River Basin

SIKE

Local and Regional Flood Assessment

- System resiliency from rainfall and operation scenarios
- Flood mapping
- Conceptual design for flood control and water diversion projects

Structure Operations

- Optimize operations for flood mitigation
- Downstream flood protection

- Release to Indian River Lagoon
- Oxidation of organic soils
- Predicted vegetation mapping

- Release to Indian River Lagoon
- Oxidation of organic soils
- Predicted vegetation mapping

- Release to Indian River Lagoon
- Oxidation of organic soils
- Predicted vegetation mapping

- Release to Indian River Lagoon
- Oxidation of organic soils
- Predicted vegetation mapping

Real-Time Flood Forecasting (RTFF)

- Real-Time
 ✓ updated hourly
- Short Range Forecast
 ✓ 18-hr forecast
 ✓ issued every hour
- Medium Range Forecast
 ✓ 10-day forecast
 ✓ issued every 6 hours

Real-Time Flood Forecasting (RTFF)

The USJRB RTFF System (Phase I)

- ✓ Model Domain:1,333 mi²
- ✓ 3,900 I-km² forcing grids
- ✓ Deployed for 2021 hurricane season

N-SGL04

"WHAT IF" SCENARIOS TRIGGERED FROM THE DASHBOARD

Flood Forecasting Resiliency Model of the Upper St. Johns River Basin

Flood Forecasting Resiliency Model of the Upper St. Johns River Basin

Flood Forecasting Resiliency Model of the Upper St. Johns River Basin

The USJRB RTFF System (Phase II)

- Incorporate observed water levels into the model
- Add ability to modify structure operations during simulations
- Acquire historical NWM data for hindcasting
- Automatically store forecast results
- Download results from dashboard

Flood Forecasting Resiliency Model of the Upper St. Johns River Basin

Pete Singhofen: psinghofen@icpr4.com

Yanbing Jia: YJia@sjrwmd.com

