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Framework of what is proposed ?
1. A CFD-ML simulation modeling tool (DeepXtorm) for stakeholders 

(regulators, engineers/scientists, infrastructure owner/operators, managers).  
DeepXtorm optimizes stormwater treatment pond geometrics (intra-pond 
and/or external geometrics) to achieve load reduction goals focused on
chemicals of interest, e.g. (in FL) TN, TP, dissolved/particulate N, P and 
particulate matter (PM) indices such as suspended solids (TSS) or SSC. 

2. DeepXtorm’s engine is powered by CFD simulations (> 100,000) based on 
existing pond geometrics  and ML algorithms (e.g. ANN) w/computational 
results residing on UF’s HiPerGator HiPerGator is the 3rd most powerful 
academic HPC worldwide.

3. DeepXtorm can be utilized either as a (I) research-based tool (as illustrated 
herein at APF) or (II) developed, licensed and deployed as a web-based app.   
If, as a user-friendly web-based app. (case II), educational/training 
workshops will be held to implement and maintain/upgrade DeepXtorm. 



What are environmental/ecological and stakeholder benefits?
1. Stormwater ponds (most are impaired based in part on residence time, RT 

guidance) are the most prevalent unit operation/process (UOP) in the USA.  
With increasingly rigorous load reduction goals (e.g., 2024 FL Clean 
Waterways Act), DeepXtorm is the only tool providing significant pond 
cost reduction while achieving load reduction goals of TN, TP, PM… 

2. A stakeholder can deploy DeepXtorm in three modes for a chemical or PM: 
(1) analysis of existing pond geometrics/hydrodynamics for load goals, 
(2) design to optimize pond geometrics/hydrodynamics for load goals, 
(3) retrofit design (intra-pond geometrics {e.g. baffles}/hydrodynamics 
and/or pond area/volume) to meet load goals for an impaired pond.

3. DeepXtorm inputs are existing/proposed pond geometric (intra-pond or 
external shape/area/volume), hydrology/hydraulics loadings, nutrients (or 
any chemical database),  partitioning (nominally dissolved vs. PM-bound) 
and particle size distribution (PSD) of PM (PSD databases published).

4. Future DeepXtorm modes are: BMPs, green infrastructure, other chemicals.
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Roman engineering report:

Roman settling basin receiving 
influent aqueduct flows

(Roman Water Commissioner)
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Newton’s Law of
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-- Basis of UF Basin CFD Design for Florida (FL)   
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Physics and Chemistry of Particulate Matter 
(PM) and Chemical Load Challenges 

Generated from Stormwater



Particulate Matter (PM): Anthropogenic and Biogenic 

• PM is the predominate sink/source of chemical partitioning

• Management of PM = Control of chemical (nutrients, metals, 
EDC, PFAS... ) load and concentration as well as load credits

• Myths regarding PM is a function of how we sample and analyze
– samplers are designed for steady wastewater flows and organic PM
– analysis based on sub-aliquot methods (TSS) without particle size data 

• Particle size distributions (PSD), particle  number density PND:
– Required for modeling PM, solute and microbiological fate
– Required for load inventories of PM and nutrients, maintenance

• While not an emerging contaminant, PM is the high surface area 
substrate for partitioning/transport of emerging contaminants ! 



Transport modifies PM: From pavement PM deposition to catch 
basin through conveyance to “BMP” influent and effluent PM
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• Result represents 
the integration of  
PSD (mass) and 
specific surface 
area (SSA) to yield 
a resulting 
distribution of SA.

• PM-associated 
chemical mass 
(metals, nutrients) 
correlates to SA of 
PM not SSA.

Chemical loads are correlated to PM surface area (SA)

Particle Diameter, m
10100100010000

SA
, m

2

0

2e+3

4e+3

6e+3

8e+3

1e+4

cu
m

ul
at

iv
e 

SA
, %

0

20

40

60

80

100
   = 386 m
   = 478 m
n   = 18
m  = 1000 g
(SA) = 35530 m2

R2 = 0.83
p   < 0.05

( c )

]2)
39.0

)255ln()ln((5.0[
128951187

]2))ln()ln((5.0[ 0

0











d

et
dd

erSASA

Log normal distribution function of SA for PM:



Partitioning and distribution of mass (example – Cu)
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Particle diameter, m
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• Sample holding time is critical for 
accurate representation of partitioning, 
speciation and treatment effectiveness
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than what the lab receives 24 hr. later



APF Pond 212
(before retrofit 

using only CFD, 
before ML and 
HiPerGator)
circa 2010



Process Flow Diagram for APF 
Eastern N-S Drainage System

1. Focus of modeling/design/monitoring: Basin 212; 
although 208, is hydraulically, basin 212-extended

2. Very small hydraulic gradient between Basin 212 and 
208; flow direction between 208 and 212 is driven by 
wind, gradient and tides.  The system control is 208. 

3. Basin 212 continuously conveys flows from the 
offsite commercial Northeast (NE) MS4 system

4. Basin 212 was and is a small on-line conveyance 
basin w/ groundwater and NE baseflow interactions

5. Basin 212 surface/watershed area ≈ 2% << 10-15%
6. Basin 212 geometrically oversized for inflows, PSDs 
7. Constraints: Environmental (loads and hydrologic 

control), Stakeholder (basin is an aesthetic amenity), 
Safety (avian and wildlife interactions with planes)



Tools for Multiphase Treatment: Standard to Innovative 
Ideal Overflow
Rate w/o PSD
- most common

Ideal Overflow
Rate w/ PSD
- rare (Case II)

Non-Ideal 
Semi-Empirical 
Models w/ PSD
- infrequent in 

USA, common 
in Europe

Multi-Phase 
CFD Models
- state of the art, 
more applied
in practice, 2005
(Case IV)
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What is computational fluid dynamics (CFD)?

In physics, Navier–Stokes (N-S) equations is a system of partial differential equation (PDEs) that 
describes the fluid motions and substance transport; Newton’s 2nd law numerically applied to fluids.

N-S equation typically does not have analytical solution. CFD is a branch of science that takes 
advantage of high-performance computing (HPC) and uses numerical method to solve N-S 
equation and simulate flow and substance transport. CFD is widely applied in a range of field.

NASA (2019) Rodi (2010) Miyazaki et al. (2017) Li & Sansalone (2020)



Application of CFD in storm or wastewater treatment 

PM separation in commercial clarification systems
(Li and Sansalone, 2020)

TDP removal dynamics in full-scale 
adsorptive reactor subject to unsteady flow

(Li and Sansalone, 2021)



Can treatment be improved through retrofit designs 
with computation fluid dynamics (CFD), circa 2008? 
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Clarifier behavior as function of unsteadiness/baffles (2008 @ UF)

* VE: volumetric efficiency, RTD: residence time distribution, N: tanks -in series value, MI: 
Morrill dispersion index, V: clarifier volume, Le/L: clarifier flow path tortuosity, PM 
removal efficiency,  and : gamma distribution parameters
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• Basin surface area: 3.2 acres
• Storage capacity: up to maximum of 

40.0 acre-ft (12.75 ft)
– 7.3% reduction in volume by  

adding baffles
– Assuming 30% gabion porosity

• Range of water depth: 9 ~ 12 ft
• Water surface elevation: varies 

seasonally
• Linear feet of baffles: 1713 
• Unit long gabion baffle mass: 8200 

kg/m (5400 pounds/ft) 
• Elevation based on NAVD88
• Gabions baskets of carbonated 

recycled concrete (CRC) aggregate 
(high SA) instead of sheet pile walls
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Pond 212 retrofit: 12 permeable gabion baffles (pre-ML) 



Basin 212 redesign (section A-A): (L 1:1250; H 1:125) 

T flow 
(%)

F flow 
(%)

Mass 
(103 kg)

Length 
~ (ft)Baffle

7723260.81061
8614297.71212
9010285.41163
8911312.51274
8317282.91155
8614310.01266
8713287.91177
8713465.01898
8416337.11379
8614374.015210
8020452.718411
7921784.931912

Filtration flow (F): through gabions
Tortuous flow (T):  between gabions 

A A
Outlet Inlet

Gabion 
baffles

NInvert of outlet 
Elevation: - 3.1 ft



Gabion Baffle of Carbonated Recycled Concrete (CRC)

Surface 
precipitation

Local 
reaction

Bulk
solution

Film 
transfer

Surface 
diffusion

Pore 
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Stagnant 
layer

Film diffusion

Bulk solution Bulk solution

Surface 
precipitation
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CbCs
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Cp
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Baffles at basin scale:
1. Volumetric utilization
2. Tortuosity increased
3. Plug flow increased
4. RTD improved

Baffles at gabion scale:
1. Hydraulically conductive
2. Tortuous effective porosity
3. Particulate matter filtration 
4. Horizontal trickling filter

Baffles at CRC media scale:
1. Higher surface area, pH substrate
2. C-S-H, Ca(OH)2, CSA substrate
3. Adsorption, chemical precipitation
4. Mass transfer of P to CRC:

a. Equilibria
b. Kinetics
c. BreakthroughWu and Sansalone, JEE, 2013 a,b,c
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Common media phosphorus adsorption capacity for 
polishing off-peak flows as a continuous time series

(Wu and Sansalone, 2011, J. Envir. Eng.)



APF pond 212 retrofit construction



Permeable Baffles and Numerical Bathymetry of Pond 212
(numerical grid coarsened significantly for visual clarity only)



Basin 212 Retrofit  
RT50 ≈ 5 days  << 14 to 21 days) 



Monitoring/Sampling/Analysis: Benchmarking



Monitoring locations and equipment for basin 212 

Rain GaugeData 
LoggerLocation

CS700CR200xR

VelocimeterSamplerPressure 
Transducer

SonTek-IQ Series Pipe PVS5120DCS451-7.25psigCR1000E In (S2)
SonTek-IQ Series PipePVS5120DCS451-7.25psigCR1000W In (S3)
SonTek-IQ Series Plus PVS5120DCS451-7.25psigCR1000NE In (S1)
SonTek-IQ Series Plus PVS5120DCS451-7.25psigCR1000N In (S1)
SonTek-IQ Series Plus PVS5120DCS451-7.25psigCR1000SW Out (S4)
SonTek-IQ Series PlusPVS5120DCS451-7.25psigCR1000SM Out (S4)
SonTek-IQ Series Plus PVS5120DCS451-7.25psigCR1000SE Out (S5)

TypeSize (h x w)Location
Elliptical15” x 36”East Inlet
Elliptical18” x 36”West Inlet
Elliptical43” x 68”Northeast Inlet
Elliptical43” x 68”North Inlet

Box Culvert5' x 8'Southwest Outlet
Box Culvert5' x 8'South-Middle Outlet
Box Culvert5' x 8'Southeast Outlet



Stormwater Ponds in Florida for Load Reduction
(Pond 212 results {2014-15 monitoring} vs. FL database)

History of use
1. Stormwater ponds have been the de-facto 

standard BMP in Florida for last 30+ 
years, 

2. Used for water chemistry, PM load and 
hydrologic/hydraulic control,

3. Traditionally requires land area usage 
upwards of 10-15% of developed area,

4. Load reduction of FL ponds without 
excluding impaired pond data* 

Cost
1. 5-100x lower: due to land area reqr., lost 

opportunity costs if pond area is expanded 
2. There is a significant need to minimize 

cost and maximize environmental benefit 
given the 10,000+ stormwater ponds in FL

Load Reduction 
Constituent FL BMP 

Database*
Pond 212 
w/retrofit      

49%78%TP

22%44%TN

45%88%PM (as TSS)

40%Not measuredZn (total)

58%Not measuredPb (total)

24%Not measuredCu (total)

Pond 212 w/ retrofit results exceeded FL 
BMP database tabular load reductions

at < 2% of watershed drainage area



PM Separation vs. Pond 212 Residence Time (RT)



Comparison of Clarification Basin Designs
(Integrate these costs for clarification basins across Florida !)

“ERP”*21 day RTAs BuiltDesign

1577823Permanent pool volume (acre-ft)

43216Hydraulic residence time (day)*

1693Land requirement (acre)

$2,120,000$1,150,000$500,000Basin construction cost

$0$0$325,000Internal basin retrofit cost

$11,600,000$6,400,000$2,200,000Land present value

$13,720,000$7,550,000$3,025,000Total basin cost

*Wet season average
As built required the use of CFD and 

to determine the effect of baffling
Engineering cost: Higher ↑

Traditional design 
(WQV regulations)

Engineering cost = Lower ↓



Modeling framework for clarification infrastructure

Morphodynamics

Runoff model

SWE Turbulence 
model

SSC

Bedload

PM phase
Transport

Adsorption 
reaction

Dissolved phase

Groundwater 
model

basinFoam architecture
(Li and Sansalone 2020, 2021)
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Coupling CFD w/ML (DeepXtorm) via HiPerGator

The Pond 212 intra-basin retrofit design with baffles and no geometric 
expansion (circa 2010), given the APF constraints, was based on 
individual CFD runs and individual baffle designs before 
implementation of UF’s HiPerGator and ML algorithms. DeepXtorm
optimizes pond performance through iterating the number/geometrics of 
baffles and/or pond geometrics shape/area/volume (if unconstrained).  

HiPerGator and ML algorithms have made a profound advance in 
optimizing cost/benefit of pond design (intra-basin or shape/volume 
geometrics), and in particular retrofits which are more challenging.

If a current retrofit design of pond 212 is carried out the cost/benefit can 
be further improved with < 12 baffles of optimized geometrics without a 
parallel or regular baffle spacing. 



What is machine learning (ML)?

As a part of artificial intelligence (AI), ML is a scientific field that develops algorithms to discover and 
“learn” the underlying patterns and correlations automatically from the data. ML is widely applied in a 
range field from medicine, autonomous vehicle, to computer vision. 

Two critical benefits of ML for stormwater infrastructure design:

● ML can create robust surrogate model for CFD simulation. Once ML is developed and validated,  
pond performance analysis can be computed in milliseconds.  Therefore a web-based app works.

● ML can be used to automatically design and optimize cost-effective stormwater system, for ponds 
this is the intra-pond baffle geometrics and/or pond shape/geometrics in new design or where 
external pond shape/geometrics are not economically or physically constrained for retrofits. 

UFTI-RTS-FDOT (2020) Google (2021)Burlutskiy et al. (2018)



DeepXtorm forecasts basin performance for any geometry/loading

basinFoam (Li & Sansalone, 
2020, 2010)

HiPerGator AI
3rd most powerful HPC in 

higher education worldwide
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100,000+ simulations of common basin designs over a 
wide range of loading conditions 



CFD-ML augmented pond design tool: DeepXtorm

Robust and smart analysis engine of DeepXtorm
based on CFD and AI (ML)

User-friendly web app interface of DeepXtorm
based on modern web development frameworks

Step1:  CFD simulations of 
common basin designs for a wide 
range loading characteristics and 
conditions (TSS, TP, TN).
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CFD-AI augmented basin design tool: deepXtorm

Robust and smart analysis engine of deepXtorm
based on CFD and AI 

User-friendly web app interface of deepXtorm
based on modern web development frameworks

Step 2: apply dynamic similarity to 
“compress” input feature and 
improve model generalizability. 
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CFD-AI augmented basin design tool: DeepXtorm

Robust and smart analysis engine of deepXtorm
based on CFD and AI 

User-friendly web app interface of deepXtorm
based on modern web development frameworks

Step 3: develop and train ML 
models based on a large amount 
and diverse CFD simulations 
(100,000+).

Random 
forest

Artificial neural 
network

Symbolic
regression
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CFD-AI augmented basin design tool: DeepXtorm

Robust and smart analysis engine of deepXtorm
based on CFD and AI 

User-friendly web app interface of deepXtorm
based on modern web development frameworks

Step 4: deploy developed ML 
models through a user-friendly
web-based application that can be 
access through any device with a 
browser 
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A machine learning, ML model as a surrogate for CFD
(therefore a stakeholder does not need to run CFD !)

We can debate the choice of a ML algorithm, here ANN and SR regression are shown.  What 
is clear is that residence time, RT does not correlate to pond performance.  As we progress 
with coupling CFD and ML we are moving to physics informed neural networks (PINNs).



● Substantial influence of PSD on basin performance and thereby basin design
● Residence time (RT) is not robust and is not singular to index basin performance
● Empirical method is limited by number of samples, not representative to generalize pond performance

CFD

If you have limited 
samples, you have 
limited confidence!

160,000 CFD 
simulations for diverse 
geometry and loadings 
are illustrated !

In contrast to existing 
models, the geometry, 
PSD, and nutrient 
partitioning are explicit 
parameters in CFD!

The fatal attraction of residence time (RT) for pond performance



Critical influence of particle size distribution (PSD)
Same RT but 
different TSS 

removal!

● Substantial influence of PSD on basin performance and thereby basin design
● Residence time (RT) is not robust and is not singular to index basin performance
● Empirical method is limited by number of samples, not representative to generalize basin performance

If you have limited 
samples, you have 
limited confidence!

100,000+ CFD 
simulations for diverse 
geometry and loadings 
are illustrated !

In contrast to existing 
models, the geometry, 
PSD, and nutrient 
partitioning are explicit 
parameters in CFD!



Extrapolation of limited RT datasets

Which 
curve?!

● Substantial influence of PSD on basin performance and thereby basin design
● Residence time (RT) is not robust and is not singular to index basin performance
● Empirical method is limited by number of samples, not representative to generalize basin performance

If you have limited 
samples, you have 
limited confidence!

100,000+ CFD 
simulations for diverse 
geometry and loadings 
are illustrated !

In contrast to existing 
models, the geometry, 
PSD, and nutrient 
partitioning are explicit 
parameters in CFD!

Existing 
methods



Example: cost-effective 3.5 ac. basin retrofit design w/UF DeepXtorm 
model (benchmarked w/Florida data for PM as TSS, and TN/TP)

● Exponential scaling in land/construction cost, hence diminishing returns for basin cost-benefit
● Existing design guidance is not cost-effective, yielding nearly 100x more costly basin design
● Urgent need for robust, scientifically-based, easy-to-use modern basin management tool! 

Basin of 3.5 ac.: 
benchmarking determined 
through 12 month in-situ 
monitoring

Bigger ponds do not 
equate to better treatment 
and smarter design !!



Attributes of DeepXtorm compared to residence time indices
1. Physical scaling is required for empirical indices such as RT, by definition, since RT is 

empirical  (not a fundamental model such as Newton’s 2nd Law).  Physical scaling is 
irrelevant for DeepXtorm which implements CFD analyses. The Navier-Stokes equations of 
CFD apply for large-scale fluid flows and also small-scale systems (see CFD slide).  To 
infer that physical scaling is required for DeepXtorm is equivalent to stating that Newton’s 
2nd law is only applicable to a large pond and not to a small pond, or vice versa.

2. Nevertheless, the CFD engine (basinFoam) of DeepXtorm has been validated at a range of 
scales from (a) full-scale pond 212 tracer (rhodamine) with monitoring data collection by 
UF and peer-reviewed publications, (b) monitored prototype clarifier at UF as shown herein 
and (c) a bench-scale clarifier at UF illustrated in the reference peer-review publication list.

3. The Li and Sansalone (2020) publication and the Extrapolation of Limited RT Datasets slide 
clearly demonstrate that RT is fundamentally flawed based on 150 datasets from physically 
monitored systems.  Furthermore, slide 41 with ML analyses also illustrates the flawed RT 
outcome.  Slide 32 and 46 illustrate the unsustainable costs of RT for a single pond.

4. Li and Sansalone (2022 a,b,c) are in the top scientific journal in our field and address 
differences between DeepXtorm and Harper’s RT method and economic consequences. 



Science related to FL ponds, clarification, adsorptive-filtration media topics in 
this presentation

Li, H., Spelman, D., and Sansalone, J. (2024). Unit Operation and Process Modeling with Physics-Informed Machine Learning, ASCE J. 
of Environmental Engineering, 150 (4), 04024002
Baffled clarification basin hydrodynamics and elution in a continuous time domain. Journal of Environmental Engineering, 595, 125958. 

https://doi.org/10.1016/j.jhydrol.2021.125958 (Basin 212, APF)
Li, H., and Sansalone, J. (2022a) Implementing machine learning to optimize the cost-benefit of urban water clarifier geometrics, Water         
Research, 118685
Li, H., and Sansalone, J. (2022b). A CFD-augmented ML alternative to residence time for clarification basin scaling, Water Research, 
209, 117965 (Basin 212, APF)
Li, H., and Sansalone, J. (2022c). Interrogating common clarification models for unit operation systems with dynamic similitude, Water 
Research, 215, 118265 (Basin 212, APF)
Li, H., and Sansalone, J. (2022). InterAdsFoam: An Open-Source CFD Model for Granular Media–Adsorption Systems with 

DynamicReaction Zones Subject to Uncontrolled Urban Water Fluxes, Journal of Environmental Engineering, 148 (9), 04022049
Li, H. and Sansalone, J. (2021). Benchmarking Reynolds-Averaged Navier-Stokes Turbulence Models for Water Clarification Systems,

Journal of Environmental Engineering, 147 (9), 04021031, Publication received ASCE’s 2023 Rudolph Hering Medal
Li, H., Spelman, D., and Sansalone, J. (2021). Baffled clarification basin hydrodynamics and elution in a continuous time domain. 

Journal of Hydrology, 595, 125958. https://doi.org/10.1016/j.jhydrol.2021.125958 (Basin 212, APF)
Li, H., and Sansalone, J. (2021). CFD with evolutionary optimization for stormwater basin retrofits. Journal of Environmental 

Engineering, 147(7), 04021017. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001881
Li, H., and Sansalone, J. (2020). CFD as a complementary tool to benchmark physical testing of PM separation by unit operations.

Journal of Environmental Engineering, 146(11), 04020122. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001803
Wu T. and Sansalone J, (2013c). The Role of Aqueous Matrices and Media Substrates on Overall Mass Transfer Kinetics of Phosphorus 

to Filter Media, Journal of Environmental Engineering, 139 (1), 1-10, 2013., FDEP funded research testing adsorptive media

Wu T. and Sansalone J, (2013b). Phosphorus Equilibrium II: Comparing Filter Media, Models and Leaching,  Journal of Environmental 
Engineering, 139, November, 1325-1335., FDEP funded research testing adsorptive media



Framework of what is proposed ?
1. A CFD-ML simulation modeling tool (DeepXtorm) for stakeholders 

(regulators, engineers/scientists, infrastructure owner/operators, managers).  
DeepXtorm optimizes stormwater treatment pond geometrics (intra-pond 
and/or external geometrics) to achieve load reduction goals focused on
chemicals of interest, e.g. (in FL) TN, TP, dissolved/particulate N, P and 
particulate matter (PM) indices such as suspended solids (TSS) or SSC. 

2. DeepXtorm’s engine is powered by CFD simulations (> 100,000) based on 
existing pond geometrics  and ML algorithms (e.g. ANN) w/computational 
results residing on UF’s HiPerGator HiPerGator is the 3rd most powerful 
academic HPC worldwide.

3. DeepXtorm can be utilized either as a (I) research-based tool (as illustrated 
herein at APF) or (II) developed, licensed and deployed as a web-based app.   
If, as a user-friendly web-based app. (case II), educational/training 
workshops will be held to implement and maintain/upgrade DeepXtorm. 



What are environmental/ecological and stakeholder benefits?
1. Stormwater ponds (most are impaired based in part on residence time, RT 

guidance) are the most prevalent unit operation/process (UOP) in the USA.  
With increasingly rigorous load reduction goals (e.g., proposed FL Clean 
Waterways Act), DeepXtorm is the only tool providing significant pond 
cost reduction while achieving load reduction goals of TN, TP, PM… 

2. A stakeholder can deploy DeepXtorm in three modes for a chemical or PM: 
(1) analysis of existing pond geometrics/hydrodynamics for load goals, 
(2) design to optimize pond geometrics/hydrodynamics for load goals, 
(3) retrofit design (intra-pond geometrics {e.g. baffles}/hydrodynamics 
and/or pond area/volume) to meet load goals for an impaired pond.

3. DeepXtorm inputs are existing/proposed pond geometric (intra-pond or 
external shape/area/volume), hydrology/hydraulics loadings, nutrients (or 
any chemical database),  partitioning (nominally dissolved vs. PM-bound) 
and particle size distribution (PSD) of PM (PSD databases published).

4. Future DeepXtorm modes are: BMPs, green infrastructure, other chemicals.


