## **FDOT Stormwater Research Update**

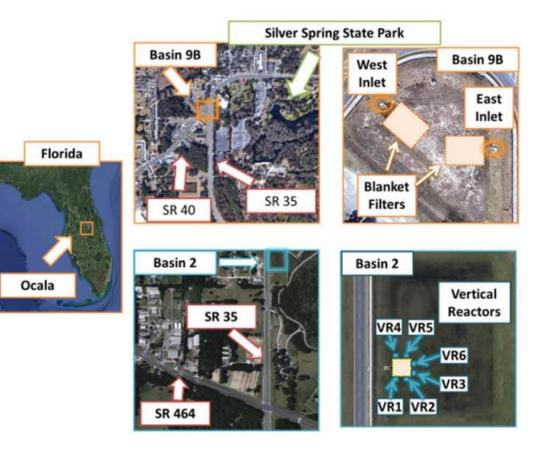


#### **FDOT Water Quality Research Investments**

| Year | Project Numb      | Title                                                                                                                       | Cos   | st          | University                    | Researcher |
|------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|-------|-------------|-------------------------------|------------|
| 2023 | <u>BDV24-977-</u> | Design of Stormwater BMPs for Surface and Groundwater Protection Based on Site-Scale Soil Properties: Phase I               | \$    | 407,409.00  | University of Central Florida | Kibler     |
| 2022 | <u>BDV31-977-</u> | Improving the Cost/Benefit Ratio of Impaired Stormwater Basins                                                              | \$    | 196,033.00  | University of Florida         | Sansalone  |
| 2021 | <u>BDV24-977-</u> | Innovative and Integrative Best Management Practices (BMPs) for Surface and Groundwater Protection                          | \$    | 797,512.00  | University of Central Florida | Kibler     |
| 2020 | <u>BDV24-977-</u> | Optimal Design of Stormwater Basins with Bio-Sorption Activated Media (BAM) in Karst Environments - Phase II: Field Testing | \$    | 400,921.00  | University of Central Florida | Kibler     |
| 2018 | <u>BDV24-977-</u> | Comparative Nitrogen and Pesticide Removal with Sorption Media In Linear Ditch for Groundwater and Stormwater               | \$    | 204,901.00  | University of Central Florida | Chang      |
| 2017 | <u>BDV24-977-</u> | Removal Effectiveness of Co-mingling Off-site Flows with FDOT Right-of-way Stormwater                                       | \$    | 149,537.00  | University of Central Florida | Chang      |
| 2015 | BDV24-977-        | Optimal Design of Stormwater Basins with Bio-sorption Activated Media (BAM) in Karst Environments-Phase I: Site Screening   | \$    | 38,868.00   | University of Central Florida | Chang      |
| 2014 | BDK78-977-        | Demonstration Bio Media for Ultra-urban Stormwater Treatment                                                                | \$    | 261,166.00  | University of Central Florida | Wanielista |
| 2014 | BDK78-977-        | Evaluation of Pollution Levels Due to the Use of Consumer Fertilizers under Florida Conditions: Examination of Lower Slopes | \$    | 103,170.00  | University of Central Florida | Chopra     |
| 2013 | <u>BDK78-977-</u> | Stormwater Harvesting Using Retention and In-Line Pipes for Treatment Consistent with the new Statewide Stormwater Rule     | \$    | 364,121.00  | University of Central Florida | Wanielista |
| 2011 | <u>BDK78-977-</u> | Evaluation of Pollution Levels Due to the Use of Consumer Fertilizers under Florida Conditions                              | \$    | 170,525.00  | University of Central Florida | Chopra     |
| 2011 | <u>BDK78-977-</u> | Pervious Pavements, Installation, Operation and Strength                                                                    | \$    | 210,036.00  | University of Central Florida | Chopra     |
| 2010 | <u>BDK78-977-</u> | Inlet Protection Devices and their Effectiveness                                                                            | \$    | 160,000.00  | University of Central Florida | Wanielista |
| 2010 | <u>BD521-04</u>   | Florida Manuals for Erosion and Sediment Control and the Creation of the Stormwater Management Academy Research and         | \$    | 642,280.00  | University of Central Florida | Wanielista |
| 2008 | <u>BD545-55</u>   | Seasonal Variability of Near Surface Soil Water and Groundwater Tables in Florida -Phase II                                 | \$    | 115,741.00  | University of Florida         | Hatfield   |
| 2010 | BD521-05          | Index Testing to Support the Stormwater Management Erosion and Sediment Control Laboratory                                  | \$    | 100,032.00  | University of Central Florida | Wanielista |
| 2007 | <u>BD521-03</u>   | Regional Stormwater Irrigation Facilities                                                                                   | \$    | 181,546.00  | University of Central Florida | Wanielista |
| 2007 | <u>BD521-02</u>   | Performance Assessment of Portland Cement Pervious Pavements                                                                | \$    | 147,547.00  | University of Central Florida | Wanielista |
| 2005 | <u>BD521-01</u>   | Wekiva River Stormwater Management Manual of Practice                                                                       | \$    | 496,500.00  | University of Central Florida | Wanielista |
|      | BKD78 985-01      | Floating Treatment Wetlands                                                                                                 | \$    | 80,523.00   |                               |            |
|      |                   | Total                                                                                                                       | \$ 5, | ,228,368.00 |                               |            |



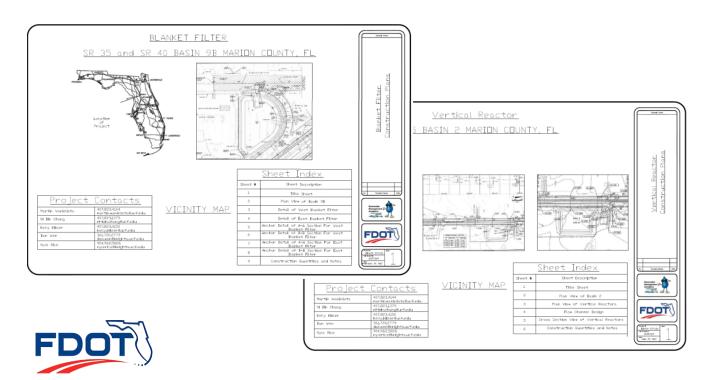
### Outline


- BDV24-977-20 Optimal Design of Stormwater Basins with Bio-Sorption Activated Media (BAM) in Karst Environments – Phase II: Field Testing of BMPs (2020)
- BDV24-977-25 Innovative and Integrative Best Management Practices (BMPs) for Surface and Groundwater Protection (2021)
- BDV24-977-43 Design of Stormwater BMPs for Surface and Groundwater Protection Based on Site-Scale Soil Properties: Phase 1 (2023)

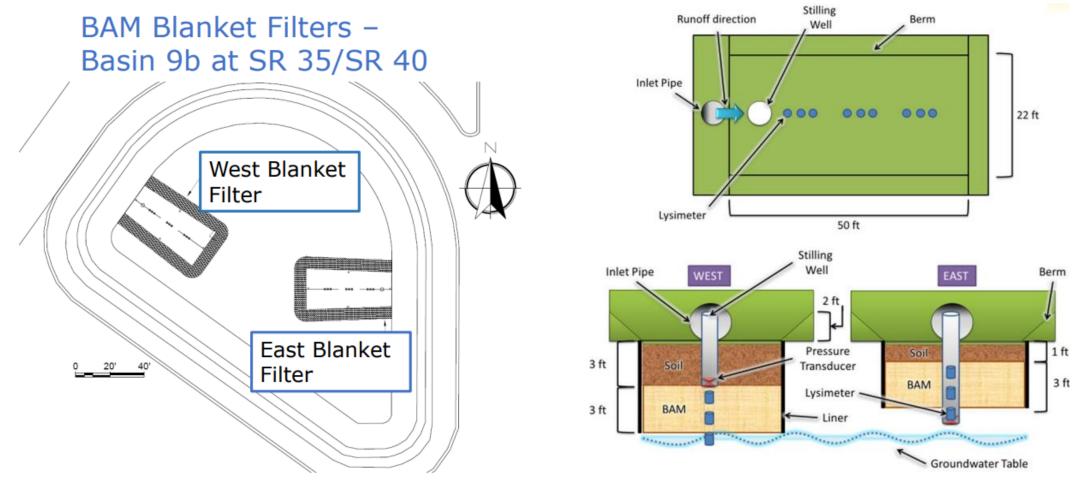
Future Research



### **BDV24-977-20 - Introduction**


- Optimal Design of Stormwater Basins with Bio-Sorption Activated Media (BAM) in Karst Environments – Phase II: Field Testing of BMPs
- PI: Kelly Kibler, UCF
- Studied Bio-Activated Media
  - Blanket Filters
  - Vertical Reactors
- Installed and tested in Ocala, FL






### BDV24-977-20 - Objectives

- Design BMPs with Bio-Activated Media
- Assess nitrogen removal
- Understand costs and benefits over BMP design life



### BDV24-977-20 – BMP Designs



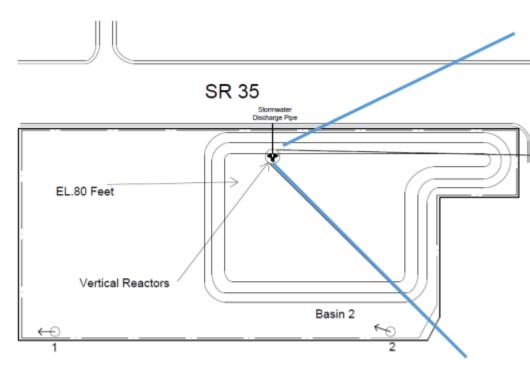


### **BDV24-977-20 – BMP Construction**

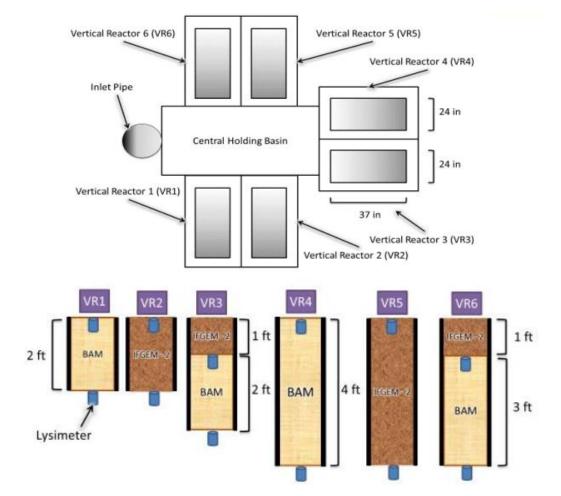
#### Blanket Filters, May 2017



Sampling equipment were embedded within media.


Placement of impermeable liner








### BDV24-977-20 – BMP Designs



#### BAM Vertical Reactors– Basin 2 off SR 35





### **BDV24-977-20 – Construction**

#### Vertical Reactors, May 2017



Delivery and placement of vertical reactors





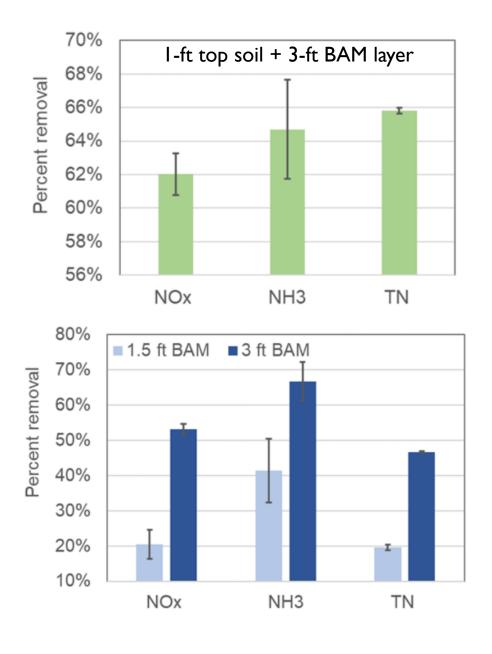
Excavation of BMPs



## **BDV24-977-20 – Testing**

### Hydrologic Monitoring

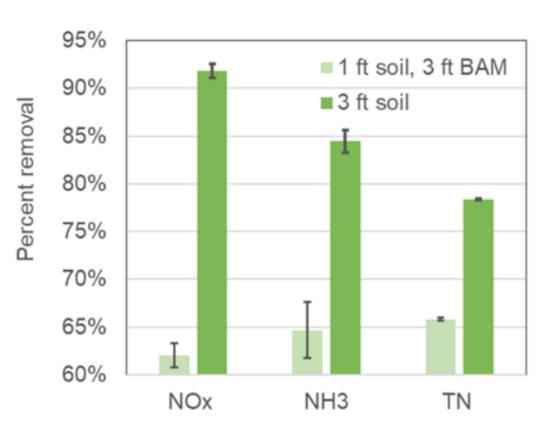
- Groundwater table depth
- Inflows to BMPs


### Storm Sampling

- 11 runoff events sampled for nutrients
- Inflow
- Media
- 135 samples per event; 1,485 total samples
- Analyzed for TN,  $NH_3$ ,  $NO_x$



#### Blanket Filters – BAM


- Mean concentrations of NOx , NH3 , and TN after blanket filter treatment within the EBF (including both the 1-ft top soil layer and 3-ft BAM layer) are 60%-66% lower than stormwater inlet concentrations.
- Increasing thickness of BAM layer will increase nutrient removal and increase costs.





#### Blanket Filters – Soil

 Mean removals of NOx , NH3 , and TN within a 3-ft soil layer range from 78%-92%, exceeding mean removal in the filtration media blanket filter.





#### Vertical Reactor

- Capture Efficiency 0.2%
- Mean concentrations of TN and NOx after treatment with 4-ft BAM layer are respectively 49% and 54% lower than stormwater inlet concentrations.



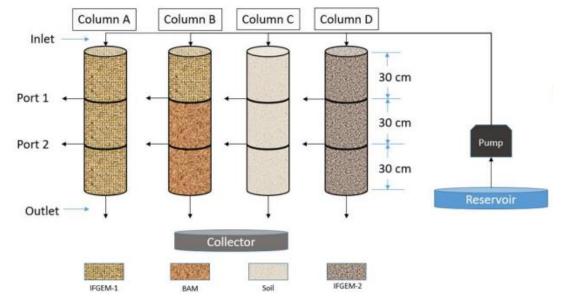


| BMP                         |                 |                  | 30-year<br>Design Life |
|-----------------------------|-----------------|------------------|------------------------|
| Blanket Filter              | TN              | \$715 ± \$27     | \$611±\$23             |
| (Based on East Bank Filter) | NO <sub>x</sub> | \$ 1,590 ± \$ 61 | \$ 1,360 ± \$ 52       |
| Vertical Reactor            | TN              | \$ 498 ± \$ 25   | \$ 453 ± \$ 23         |
| (Based on VR4)              | NO <sub>x</sub> | \$ 732 ± \$ 37   | \$ 701 ± \$ 35         |

COST per pound of TN or NOx (\$/lb)



### **BDV24-977-25 - Introduction**


- Innovative and Integrative Best Management Practices (BMPs) for Surface and Groundwater Protection
  - Chemically activated media (CAM) development
  - Bio-activated media in vegetated filter strip
  - Updates to BMP Trains
  - Groundwater flow-nutrient model in Karst geology
- PI Dr. Kelly Kibler, UCF



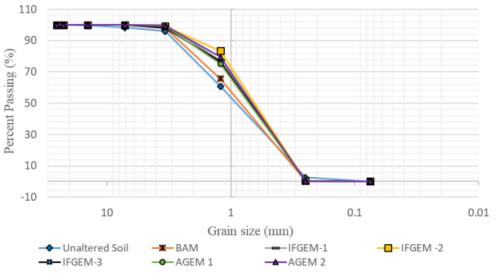
### BDV24-977-25 - CAM

- Research
- Development

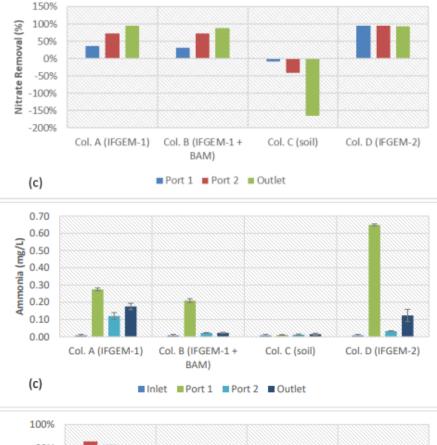
Testing

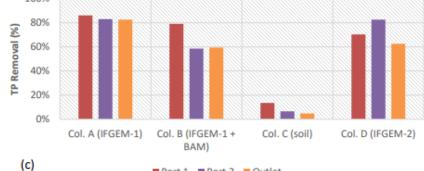


| Material (%)       | BAM | IFGEM-1<br>(CAM-1) | IFGEM-2<br>(CAM-2) | IFGEM-3<br>(CAM-3) | AGEM -1<br>(CAM-4) | AGEM-2<br>(CAM-5) |
|--------------------|-----|--------------------|--------------------|--------------------|--------------------|-------------------|
| Sand               | 85  | 96.2               | 80                 | 83                 | 78                 | 85                |
| Tire Crumb         | 10  |                    | 10                 | 10                 | 10                 |                   |
| Clay               | 5   |                    | 5                  | 2                  | 2                  | 3                 |
| Iron filings       |     | 3.8                | 5                  | 5                  | 5                  | 7.5               |
| Aluminum<br>flakes |     |                    |                    |                    | 5                  |                   |
| Aluminum<br>powder |     |                    |                    |                    |                    | 4.5               |




### **BDV24-977-25 – CAM**


#### CAM development


Material property characterization

#### Nutrient removal column studies

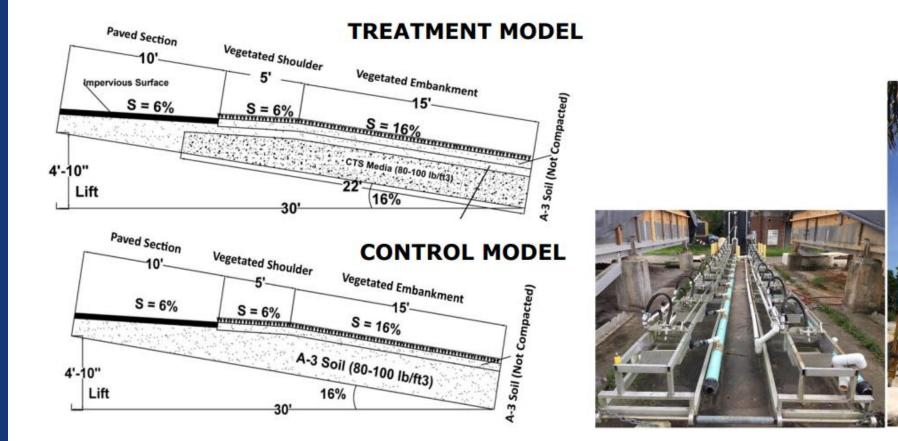








Port 1 Port 2 Outlet


### BDV24-977-25 – CAM Results

# In situ regeneration may be possible in IFGEM-3

**•AGEM-2** – regeneration may not be possible.

| Nutrient                     | Total<br>nutrient<br>loading<br>(mg) | Nutrient<br>adsorbed<br>(mg) | Maximum<br>sorption<br>capacity<br>(mg/g) | Nutrient<br>produced and<br>released during<br>adsorption<br>(mg) | Nutrient<br>released<br>during<br>desorption<br>(mg) | Nutrient<br>generated<br>(recovered)<br>(mg) |
|------------------------------|--------------------------------------|------------------------------|-------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|
|                              |                                      |                              | IFGE                                      | M-3                                                               |                                                      |                                              |
| NO <sub>3</sub> -            | 385.65                               | 161.42                       | 0.32                                      |                                                                   | 4.33                                                 |                                              |
| PO <sub>4</sub> -3           | 385.64                               | 377.56                       | 0.76                                      |                                                                   | 215.98                                               |                                              |
| NH <sub>3</sub> +            | 0                                    |                              |                                           | 68.03                                                             | 1.13                                                 | 69.16                                        |
|                              |                                      |                              | AGE                                       | M-2                                                               |                                                      |                                              |
| NO <sub>3</sub> -            | 385.65                               | 200.61                       | 0.40                                      |                                                                   | 2.03                                                 |                                              |
| PO <sub>4</sub> -3           | 385.64                               | 371.20                       | 0.74                                      |                                                                   | 84.29                                                |                                              |
| NH <sub>3</sub> <sup>+</sup> | 0                                    |                              |                                           | 93.4                                                              | 2.49                                                 | 95.89                                        |







### BDV24-977-25 - BAM Vegetated Filter Strip

BAM into treatment model A3 soils into control model





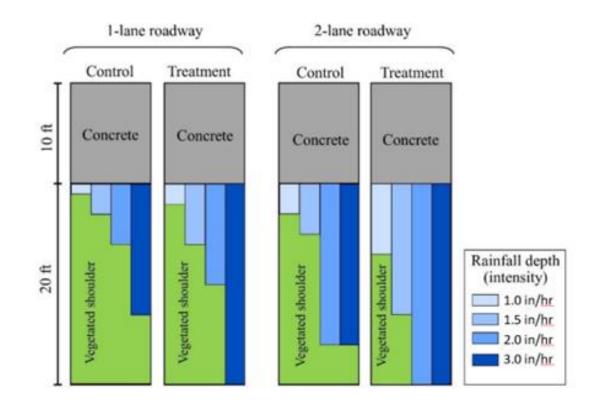


- Physical roadway models
- Materials testing
- Vegetation establishment
- Simulator preparation and testing





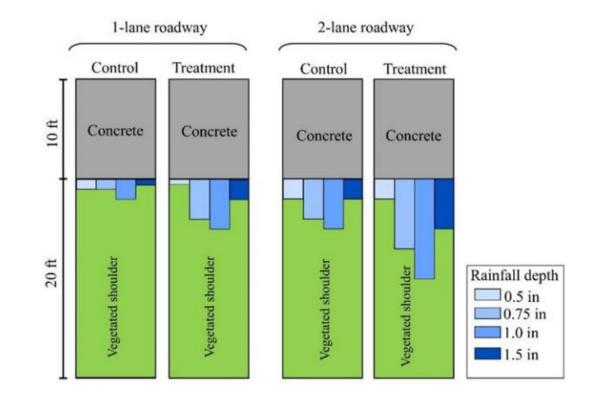
60 tests


- 1-lane and 2-lane typical sections
- Various rainfall intensity conditions (0.5, 1, 1.5, and 3 in/hr)
- Nutrient removal performance tested for various rainfall depths (0.5 0.75, 1, 1.5, and 3 inches)



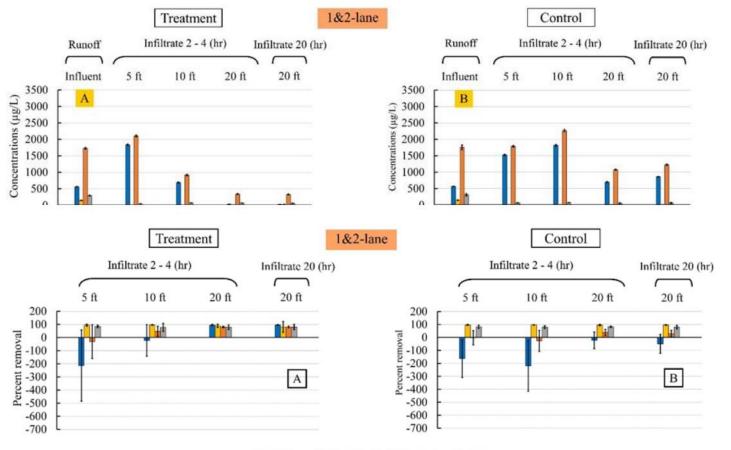


### For high intensity events


- All surface water infiltrated in control model (sandy soils)
- The treatment model generated runoff at 20 ft
- Maximum rainfall intensity for 20 ft BAM VFS:
  - <2in/hr for 2-lane roadways</p>
  - <3in/hr for 1-lane roadways</p>






### For typical events

- All surface water infiltrated both models
- Intensities exceeding hydraulic capacity of the 20 ft VFS are rare





- Nutrient removal
  - 20-ft BAM VFS removed more nitrate and TN
  - No performance difference in TP removal



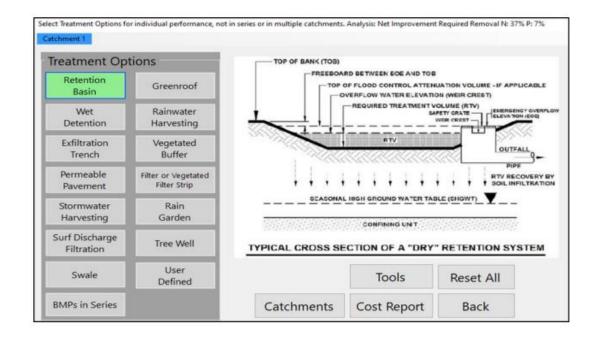
■NOx ■NH3 ■TN ■TP



20

## BDV24-977-25 – BMP Trains Overhaul

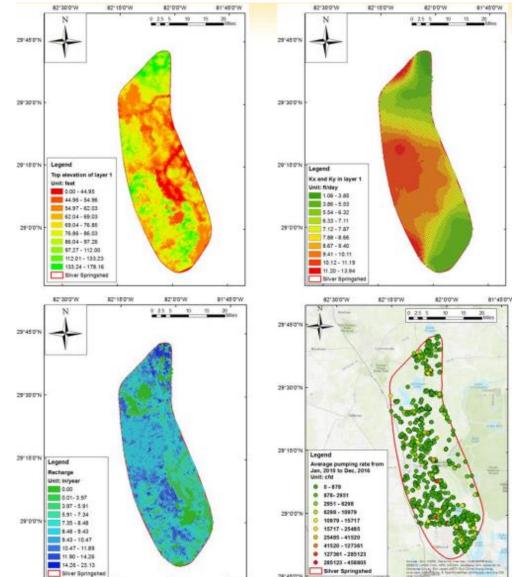
### Requests for improvement from


FDEP

- Water Management Districts
- FDOT
- Focus group testing throughout project
- 14 workshops
- 360 professionals

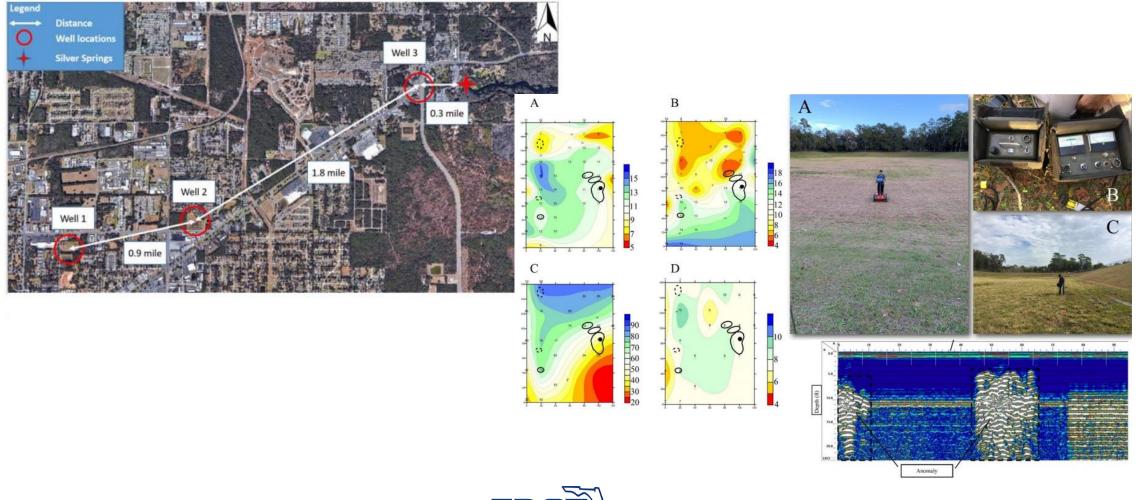


### **BDV24-977-25 – BMP Trains**

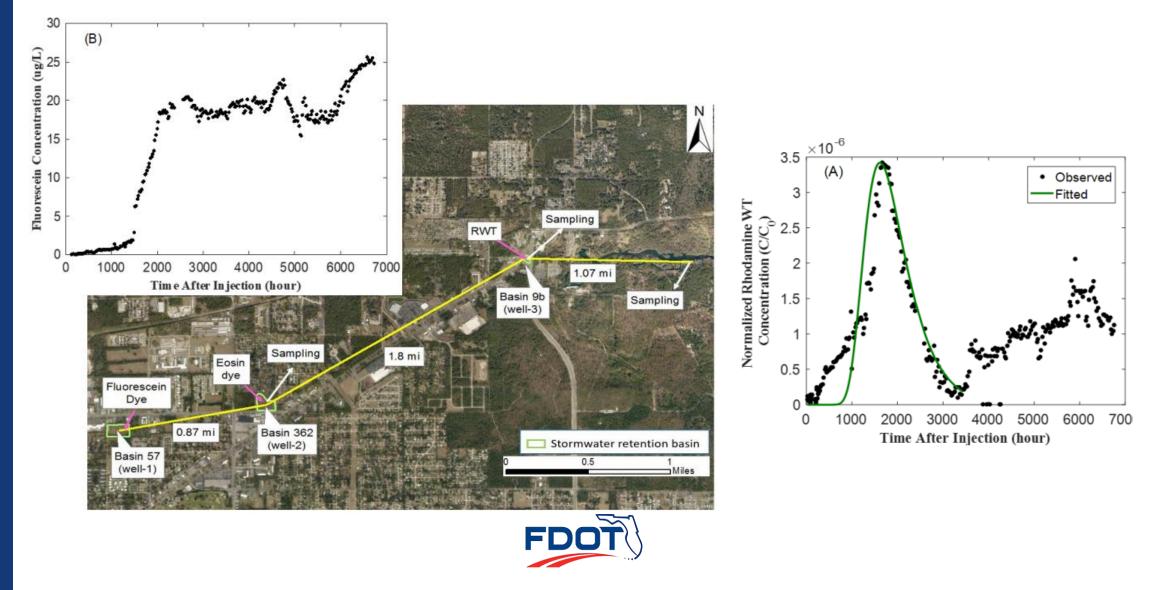

- Recoded from EXCEL to C++
- Developed graphics user interface
- Renamed BMP Trains 2020
- Model testing and validation
- User manual updated with example problems
- Model and user manual perpetually maintained and available at UCF's STARS repository






### BDV24-977-25 – Groundwater model

Location: Silver Springs, FL
MODFLOW with CFPv2
CMT3D






#### BDV24-977-25 – Groundwater Model







#### MODFLOW CFPv2 groundwater flow model

| Period                  |             | Groundwa  | ater Level     | Spring Discharge |                |  |
|-------------------------|-------------|-----------|----------------|------------------|----------------|--|
|                         |             | RMSE (ft) | Relative Error | NSE              | Relative Error |  |
| Calibration Mean annual |             | 1.79      | 3%             | 0.86             | 6%             |  |
| Validation              | Mean annual | 1.19      | 2%             | 0.70             | 7%             |  |
| Validation              | Monthly     | 1.04      | 2%             | 0.84             | 6%             |  |

#### CMT3D nutrient transport model

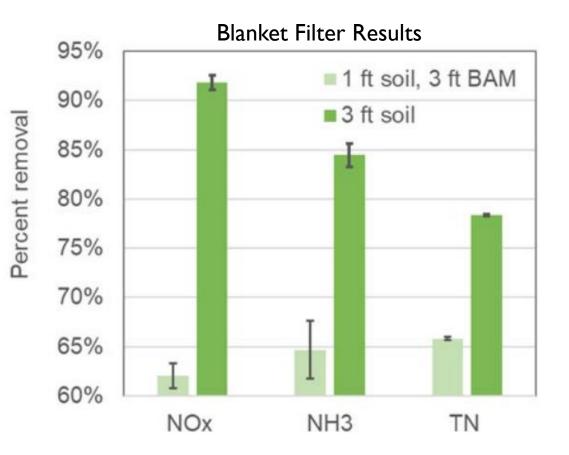
| Statistics            | NO <sub>3</sub> |                       | T           | N                     | ТР          |                       |
|-----------------------|-----------------|-----------------------|-------------|-----------------------|-------------|-----------------------|
| Statistics            | Calibration     | Validation            | Calibration | Validation            | Calibration | Validation            |
| Data range            | 2000-2008       | 2009-2016<br>and 2019 | 2001-2007   | 2008-2010<br>and 2019 | 2000-2007   | 2008-2010<br>and 2019 |
| RMSE (mg/L)           | 0.06            | 0.09                  | 0.10        | 0.07                  | 0.007       | 0.006                 |
| Relative error<br>(%) | 4.4             | 5.2                   | 7.0         | 5.0                   | 11.7        | 11.3                  |



| Scenario | Blanket filter<br>implementation                           | Area<br>(acres) | Percent of<br>SRB area<br>(%) | Roadway shoulder<br>implementation                        | Length<br>(miles) | Percent of<br>roadways<br>(%) |
|----------|------------------------------------------------------------|-----------------|-------------------------------|-----------------------------------------------------------|-------------------|-------------------------------|
| 1        | Baseline - no BAM is<br>implemented                        | 0               | 0                             | Baseline - no BAM is<br>implemented                       | 0                 | 0                             |
| 2        | BAM blanket filters are<br>implemented in 26 FDOT<br>SRBs  | 3,682           | 13                            | No BAM VFS                                                | 0                 | 0                             |
| 3        | BAM blanket filters are<br>implemented in all<br>FDOT SRBs | 27,651          | 100                           | No BAM VFS                                                | 0                 | 0                             |
| 4        | No BAM blanket filters                                     | 0               | 0                             | BAM VFS are<br>implemented in 30%<br>of roadway shoulders | 2,368             | 30%                           |
| 5        | No BAM blanket filters                                     | 0               | 0                             | BAM VFS are<br>implemented in 60%<br>of roadway shoulders | 4,735             | 60%                           |
| 6        | BAM blanket filters are<br>implemented in all<br>FDOT SRBs | 27,651          | 100                           | BAM VFS are<br>implemented in all<br>roadways shoulders   | 7,893             | 100%                          |



- Cumulative water quality benefits of BAM BMPs to Silver Springs are minimal.
- Considering the resources required for such implementation and the limited water quality benefits, the BAM-based BMPs investigated may not be a rational investment to improve Silver Springs water quality.


| Roadway<br>Shoulder<br>Implementation | Total Nitrate<br>Concentration<br>Reduction | TN<br>Concentration<br>Reduction | TP<br>Concentration<br>Reduction | Cost to Implement |
|---------------------------------------|---------------------------------------------|----------------------------------|----------------------------------|-------------------|
| 30%                                   | 2.3%                                        | 1.7%                             | 0.7%                             | \$3,055,868,066   |
| 60%                                   | 4.5%                                        | 3.4%                             | 1.5%                             | \$6,110,445,528   |
| 100%                                  | 5.8%                                        | 5.2%                             | 1.6%                             | \$10,185,796,353  |

Percent nutrient concentration reduction assumes the worse case native soil nutrient removal efficiencies (i.e. BAM is highly more efficient than soil).

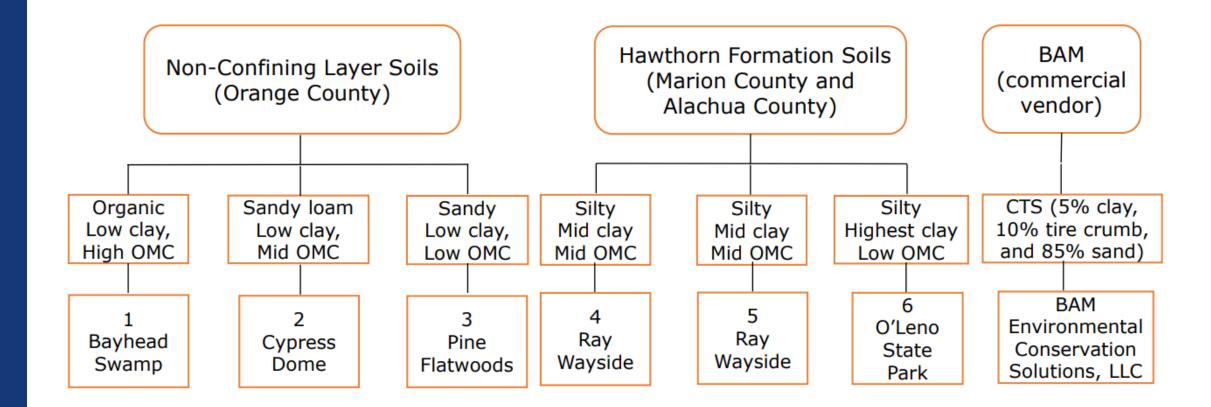


### **BDV24-977-43 - Introduction**

- Design of Stormwater BMPs for Surface and Groundwater Protection Based on Site-Scale Soil Properties: Phase I
- PI: Kelly Kibler, UCF
- Follow-up to BDV24-977-20 and FDEP NS001 (2016-2020)
- Recall BAM did not remove nitrogen from stormwater as effectively as unaltered site soils.





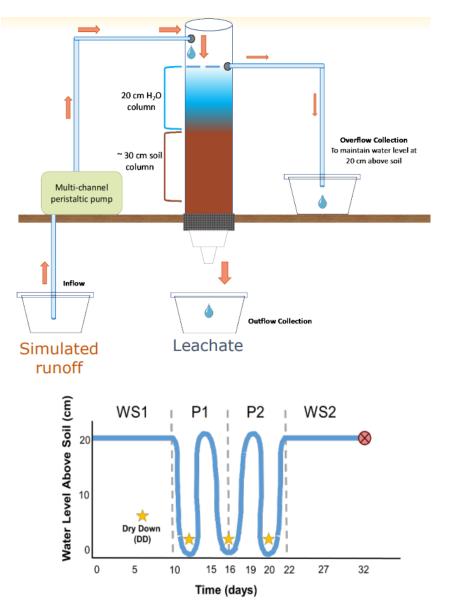

### BDV24-977-43 - Objectives

- Quantify the nutrient removal/retention potential
- Isolate the material properties
- Compare nutrient remediation of BAM

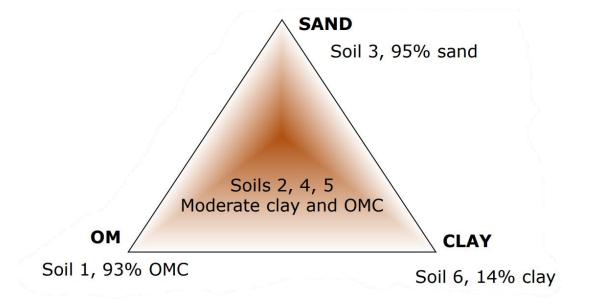




#### **BDV24-977-43 – Site Selection**







### **BDV24-977-43 - Testing**

- Soils Characterization
  - 16 parameters
- Denitrifying Enzyme Activity (DEA) – N Removal
- Potentially Mineralizable Nitrogen (PMN) – N Release
- Column Study
  - Leachate
  - Hydraulic performance





- Soils with combination of OMC and clay may be most effective at remediating nutrients
- Soils with mixture of moderate OMC and clay (Soils 2, 4, 5) removed/sequestered nutrients more effectively
- P sequestration was most effective in soils with higher pH and metal content (Soils 1, 4, 5)



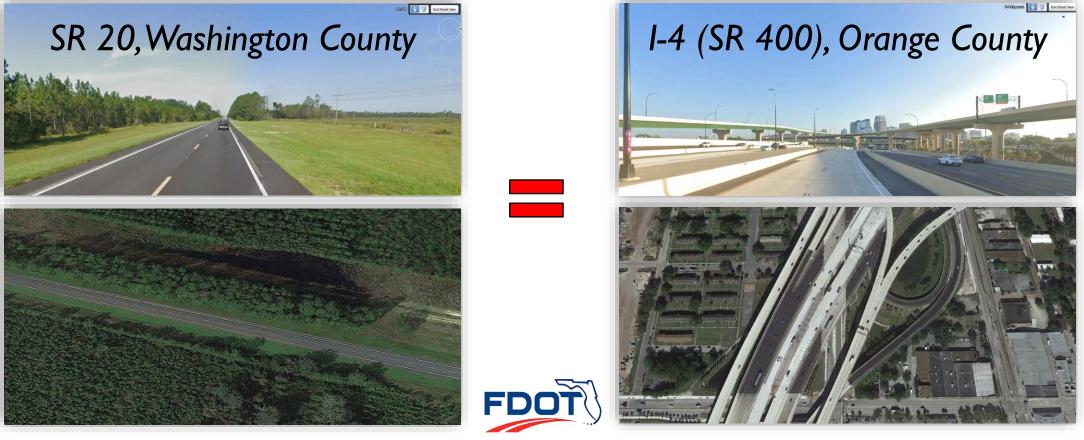


### **BDV24-977-43 - Recommendations**

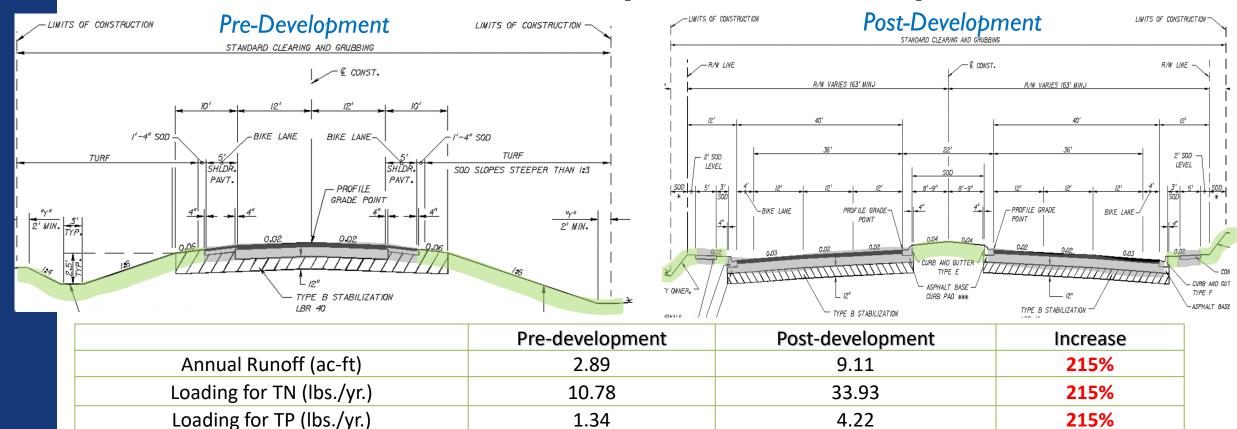
- Native soils are an important tool in stormwater nutrient remediation
- •Understanding the soil remediation potential can justify potential water quality benefits of using BAM.



#### Design of Stormwater BMPs for Surface and Groundwater Protection Based on Site-Scale Soil Properties: Phase 2


Continuation of Dr. Kibler research

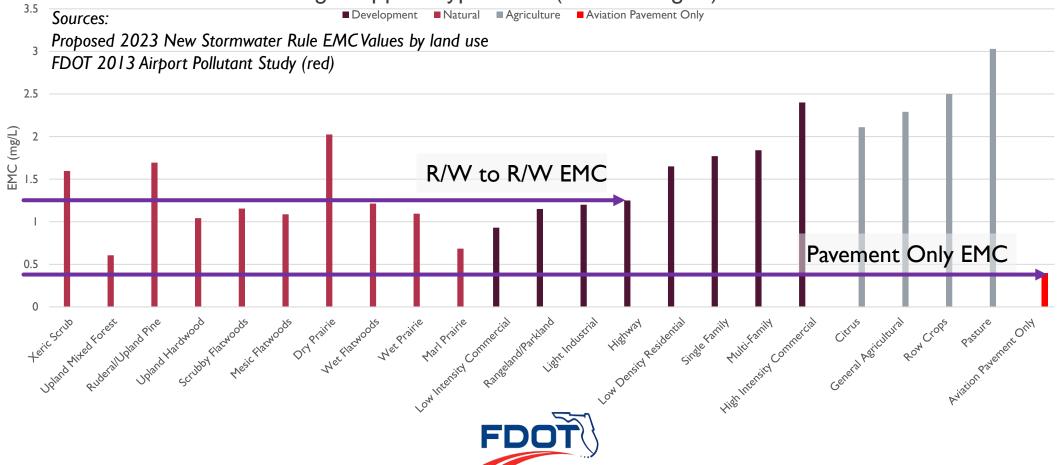
- Evaluate nutrient efficiency range of natural soils based on in-situ composition under natural hydrologic conditions
- Investigate nutrient efficiency range of FDOT Specification's 987 Soil Layer Materials
- Develop guidelines based on native soil's composition to make sitespecific recommendations of whether BAM would be beneficial or not




#### Event Mean Concentration updates for Transportation

 Differentiate EMCs based on land cover to demonstrate nutrient loadings are not directly proportional to runoff generation.

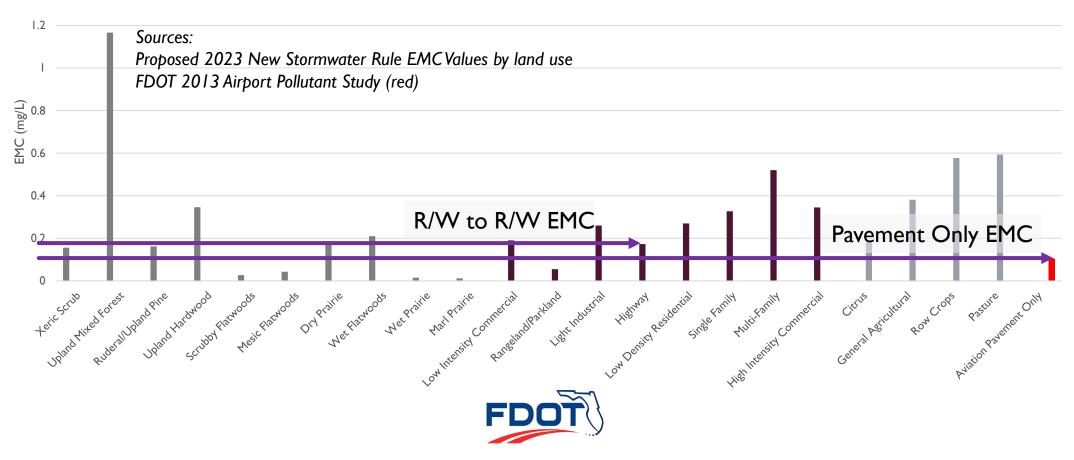



#### Event Mean Concentration updates for Transportation





#### Event Mean Concentration updates for Transportation


Aviation Research Findings support hypothesis (Total Nitrogen)



#### Event Mean Concentration updates for Transportation

Aviation Research Findings support hypothesis (Total Phosphorus)

■ Natural ■ Development ■ Agriculture ■ "Aviation Pavement Only"



#### Event Mean Concentration updates for Transportation

Status - Pending management approval and research funding allocation.



### Conclusions

#### To substantially improve watershed, targeted nutrient removal investments at high load sources

- FDOT has invested in septic-to-sewer projects, estuary circulation for sea grass habitat enhancements, etc.
- Measured nutrient concentrations from rural roadways are below Springshed BMAP target Nitrate concentrations
- Soils have a range of natural nutrient cycling efficiencies
  - Current research to develop guidance
- BAM may not be appropriate in all cases
  - Significant taxpayer investment should result in significant load reductions
  - BAM could be used if efficiency is significantly higher compared to the native soils



### Questions

Contact:

Jennifer Green, P.E., CPM

State Drainage Engineer – Roadway Design Office

850-414-4351

jennifer.green@dot.state.fl.us

Kelly Kibler Associate Professor – Water Resources Engineering 407-823-4150 Kelly.kibler@ucf.edu

