

### LID/GI Design and Effectiveness

Improving Water Quality with Green Infrastructure and Low Impact Development December 4, 2019

FOR THE

#GATORGOOD

Eban Z. Bean, PhD, PE Asst. Professor & Ext. Specialist Urban Water Resources Engineering Ag. & Bio. Engineering, UF | IFAS

### **Definition of LID**

"A <u>site design strategy</u> for maintaining or replicating the predevelopment hydrologic regime through the use of <u>design techniques</u> that create a functionally equivalent hydrologic landscape. Hydrologic functions of storage, infiltration, and ground water recharge, plus <u>discharge volume</u> and <u>frequency</u> are maintained by integrated and distributed microscale stormwater retention and detention areas, reduction of impervious surfaces, and the lengthening of flow paths and runoff time. Other LID strategies include, but are not limited to, the preservation of environmentally sensitive site features such as natural upland habitat, wetlands, wetland buffers, and floodplains."

- Alachua County Unified Land Development Code 410-23.







Primary focus







### **Treatment Processes and SCMs**

| Treatment<br>Process/Function | SCM Options                                                                                              | What is Removed?                                                 | How Does It Happen?                                                                                                                                                                     |
|-------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flotation                     | Skimmers<br>Oil/water separators<br>Density separators                                                   | Oil and other hydrocarbons<br>Trash                              | Substances lighter than water are removed with units specifically designed for this purpose.                                                                                            |
| Settling / sedimentation      | Bioretention<br>Wetlands<br>Wet or dry ponds<br>Tree boxes<br>Cisterns                                   | Suspended solids<br>Metals<br>Particulate phosphorus<br>Organics | Suspended particles settle by gravity, along with pollutants adhered<br>to them. Forebays must capture and facilitate periodic removal of<br>sediment. Avoid re-suspension of sediment. |
| Filtration                    | Sand / gravel filters<br>Natural / amended soil<br>Green roofs<br>Infiltration tanks<br>Horizontal wells | Suspended solids<br>Metals<br>Phosphorus<br>Organics             | Stormwater passes through a porous material, mechanically removing anything larger than the pore openings.                                                                              |
| Sorption                      | Any BMP employing<br>infiltration thru soils or other<br>media, especially organic<br>material or clay.  | Dissolved nutrients<br>Metals<br>Bacteria                        | Contaminants adhere to irregularities in the surface of vegetation, to<br>clay particles in soil, or are attached to other molecules by chemical<br>bonds                               |
| Biological removal            | Bioretention<br>Enhanced ponds<br>Floating islands                                                       | Nitrogen<br>Phosphorus<br>Organic molecules                      | Microorganisms and plants take in nutrients needed for their cell growth and break apart large organic molecules.                                                                       |

### Match Pollutant with Process



# LID SCMs



- Non-structural LID SCMs
- General Structural SCM Design Criteria
- Structural SCMs
- Flow Control SCMs
- Flow-through SCMs
- Off-lot SCMs
- Other Treatment Systems

Eleve







## **Identifying Site Constraints**





# **Conventional Approach**



Lot & Street Level Runoff



Stormwater Pond Meets Flood Control Flow Rate Water Quality Volume



### **Stormwater Pond Performance**



Paired sample results collected from 18 (N) and 23 (P) stormwater retention ponds in Florida. International Stormwater BMP Database



- Presumptive Compliance
- Impairment, TMDLs, BMAPs
- Numeric Nutrient Criteria



## Low Impact Development/Green Stormwater Infrastructure Approach



Treated Flow Through

Stormwater Pond Meets Flood Control Flow Rate



Water Quality Volume

Lot & Street Leve<u>l Runoff</u>

Bypass/Overflow

### Source Loading Calculations

- Annual Mass Loading = Runoff Volume \* Flow-Weighted Concentration
- Volume Annual average runoff volume from source area per year
- Concentration Event Mean Concentration (flow weighted concentration)

- Background and examples
- <u>https://www.florida-stormwater.org/assets/MemberServices/</u> <u>Seminars/2016/02 - runoff and pollutant loadharper.pdf</u>

## Average Annual Runoff Volume

- Long-term assessment
- Based on Rationale Method
- Q = CiA
  - Q annual runoff volume (ac-in.)
  - C equivalent runoff coefficient
  - i average annual rainfall (in.)
  - A drainage area (ac.)





## Annual Runoff Coefficient

### Equivalent Long-Term Runoff Coefficient for Curve Number

- Area Composition
  - Impervious
    - Percent Directly Connected (DCIA)
    - Non-DCIA
  - Pervious
    - Soil type
- Rainfall Characteristics
  - Region specific values



### **FDEP Event Mean Concentrations**

|                                  | TYPICAL RUNOFF CONCENTRATION (mg/l) |         |      |      |        |       |       |  |  |  |  |  |  |
|----------------------------------|-------------------------------------|---------|------|------|--------|-------|-------|--|--|--|--|--|--|
| CATEGORY                         | TOTAL N                             | TOTAL P | BOD  | TSS  | COPPER | LEAD  | ZINC  |  |  |  |  |  |  |
| Low-Density Residential          | 1.61                                | 0.191   | 4.7  | 23.0 | 0.008  | 0.002 | 0.031 |  |  |  |  |  |  |
| Single-Family                    | 2.07                                | 0.327   | 7.9  | 37.5 | 0.016  | 0.004 | 0.062 |  |  |  |  |  |  |
| Multi-Family                     | 2.32                                | 0.520   | 11.3 | 77.8 | 0.009  | 0.006 | 0.086 |  |  |  |  |  |  |
| Low-Intensity Commercial         | 1.18                                | 0.179   | 7.7  | 57.5 | 0.018  | 0.005 | 0.094 |  |  |  |  |  |  |
| High-Intensity Commercial        | 2.40                                | 0.345   | 11.3 | 69.7 | 0.015  |       | 0.160 |  |  |  |  |  |  |
| Light Industrial                 | 1.20                                | 0.260   | 7.6  | 60.0 | 0.003  | 0.002 | 0.057 |  |  |  |  |  |  |
| Highway                          | 1.64                                | 0.220   | 5.2  | 37.3 | 0.032  | 0.011 | 0.126 |  |  |  |  |  |  |
| Undeveloped / Rangeland / Forest | 1.15                                | 0.055   | 1.4  | 8.4  |        |       |       |  |  |  |  |  |  |
| Data available for various areas | field as adition                    |         |      |      |        |       |       |  |  |  |  |  |  |

Data available for various green field conditions.



Discharge to Surface Waters – TN: 70% Post; TP: 80% Post Discharge to Outstanding Florida Waters – TN/TP: 95% Post Impaired Waters – TN/TP: Post < [Pre - 10%] Net Improvement Standard

# Statewide BMP Efficiencies

#### TABLE 1: EFFICIENCIES FOR NONPOINT SOURCE MANAGEMENT BMPs

#### N/A = Not applicable

This is a change from the previous method. The benefits of a baffle box—including BMP maintenance—are included in the baffle box credits when they are installed.

| STANDARD BMPs                                                    | TP % REDUCTION                                                                                                                 | TN % REDUCTION                                                                                                                | DATA SOURCE                                                                                                            |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Off-line retention BMPs                                          | 40% - 84 % (see Table 5 for formulas)                                                                                          | 40% - 84% (see Table 5 for formulas)                                                                                          | Harper, H. & D. Baker. 2007. Evaluation<br>of Current Stornwater Design Criteria<br>within the State of Florida.       |  |  |  |
| <b>On-line retention BMPs</b>                                    | 30% - 74% (see Table 5 for formulas)                                                                                           | 30% - 74% (see Table 5 for formulas)                                                                                          | DEP Evaluation/Regression of Harper, H.,<br>and D. Baker 2007                                                          |  |  |  |
| Grass swales with swale blocks or raised culverts                | Use on-line retention BMPs above                                                                                               | Use on-line retention BMPs above                                                                                              | DEP Evaluation/Regression of Harper, H.,<br>and D. Baker 2007                                                          |  |  |  |
| Grass swales without swale blocks or raised culverts             | 50% of value for grass swales with<br>swale blocks or raised culverts                                                          | 50% of value for grass swales with swale blocks or raised culverts                                                            | DEP Evaluation/Regression of Harper, H.,<br>and D. Baker 2007                                                          |  |  |  |
| Wet detention ponds                                              | Formula shown on Figure 13.2 of the<br>Draft Stormwater Treatment<br>Applicant's Handbook-<br>(see Figure 1 below for formula) | Formula shown on Figure 13.3 of the<br>Draft Stormwater Treatment Applicant's<br>Handbook<br>(see Figure 2 below for formula) | Draft Stormwater Treatment Applicant's<br>Handbook, March 2010                                                         |  |  |  |
| Dry detention ponds                                              | 10%                                                                                                                            | 10%                                                                                                                           | DEP Evaluation/Regression of Harper, H.,<br>and D. Baker 2007                                                          |  |  |  |
| BMP treatment trains<br>using a combination of BMPs              | BMP Treatment Train equation:<br>Efficiency = Eff1 +((1-Eff1) *Eff2)<br>or<br>BMPTRAINS model                                  | BMP Treatment Train equation:<br>Efficiency = Eff1 +((1-Eff1) *Eff2)<br>or<br>BMPTRAINS model                                 | Draft Stormwater Treatment Applicant's<br>Handbook, March 2010<br>UCF Stormwater Management Academy<br>BMPTRAINS model |  |  |  |
| Baffle boxes- First generation<br>(hydrodynamic separator)       | 2.30%                                                                                                                          | 0.50%                                                                                                                         | First and second generation: Final Report                                                                              |  |  |  |
| Baffle boxes—Second generation                                   | 15.5%                                                                                                                          | 19.05%                                                                                                                        |                                                                                                                        |  |  |  |
| Baffle boxes—Second generation plus<br>Bold & Gold® media filter | 70%                                                                                                                            | 75%                                                                                                                           | Boxes Plus Media Filter: UCF and City of<br>Casselberry studies                                                        |  |  |  |
| Baffle boxes—Second generation plus<br>Vault-Ox® media filter    | 8%                                                                                                                             | 50%                                                                                                                           |                                                                                                                        |  |  |  |
| Alum injection systems                                           | 90%                                                                                                                            | 50%                                                                                                                           | DEP Evaluation/Regression of Harper, H.,<br>and D. Baker 2007                                                          |  |  |  |





![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

Treatment Train Efficiency =  $Eff_1 + ((1 - Eff_1) * Eff_2)$ 36% + ((1 - 36%) \* 38% = 36% + 24% = 60%

### Treatment Train – SCMs in Series

![](_page_25_Figure_1.jpeg)

Treatment Train Efficiency =  $Eff_1 + ((1 - Eff_1) * Eff_2)$ 52% + ((1 - 52%) \* 38% = 52% + 18% = 70%

![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_28_Figure_0.jpeg)

### **Design Process**

Unique for each type of LID SCM but in general...

### 1. Capture Volume

- Contributing Area
- Runoff Depth
- Pore Space
- 2. Storage Recovery
  - Soil and Water Table Characteristics
  - Overflow or Bypass
  - 72 Hours or Less

HITT

PICP: 10,800 sq. ft. Asphalt: 16,000 sq. ft. Impervious to Pervious Ratio: 1.5

HER

### **In-Pavement Well**

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

### **Sloped Permeable Pavement**

![](_page_32_Figure_1.jpeg)

Storage: ~2.0 in. (50 mm)

1 yr, 6-hr: 2.25 in. (58 mm)

## Sloped Permeable Pavement

![](_page_33_Figure_1.jpeg)

### Storage: ~0.4 in. (10 mm)

![](_page_34_Figure_0.jpeg)

### **Pavement Performance**

### March 2013 – April 2014

Totals

Rainfall: 64.6 in. (15% above normal) Runoff: 38.4 in. (60%) Infiltration: 26.1 in. (40%)

Storms:

101 events > 0.1 in. 15 events > 1.00 in. Max: 3.84 in. (2-yr, 24 h)

![](_page_35_Figure_6.jpeg)

### TABLE 6-1

### REQUIRED RETENTION DEPTHS TO ACHIEVE AN ANNUAL REMOVAL EFFICIENCY OF 80%

#### State-Wide Average

| NDCIA |      | Percent DCIA |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-------|------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| CN    | 10   | 15           | 20   | 25   | 30   | 35   | 40   | 45   | 50   | 55   | 60   | 65   | 70   | 75   | 80   | 85   | 90   | 95   | 100  |
| 30    | 0.24 | 0.28         | 0.37 | 0.45 | 0.51 | 0.59 | 0.67 | 0.75 | 0.82 | 0.90 | 0.98 | 1.05 | 1.13 | 1.21 | 1.29 | 1.37 | 1.44 | 1.52 | 1.60 |
| 35    | 0.26 | 0.30         | 0.39 | 0.46 | 0.53 | 0.60 | 0.68 | 0.75 | 0.83 | 0.91 | 0.98 | 1.06 | 1.14 | 1.21 | 1.29 | 1.37 | 1.45 | 1.52 | 1.60 |
| 40    | 0.29 | 0.33         | 0.41 | 0.48 | 0.54 | 0.62 | 0.69 | 0.77 | 0.84 | 0.92 | 0.99 | 1.07 | 1.14 | 1.22 | 1.30 | 1.37 | 1.45 | 1.52 | 1.60 |
| 45    | 0.34 | 0.37         | 0.44 | 0.50 | 0,56 | 0.64 | 0.71 | 0.78 | 0.85 | 0.93 | 1.00 | 1.08 | 1.15 | 1.23 | 1.30 | 1.38 | 1.45 | 1.53 | 1.60 |
| 50    | 0.43 | 0.44         | 0.48 | 0.53 | 0.59 | 0.67 | 0.74 | 0.80 | 0.87 | 0.95 | 1.02 | 1.09 | 1.16 | 1.24 | 1.31 | 1.38 | 1.45 | 1.53 | 1.60 |
| 55    | 0.54 | 0.52         | 0.54 | 0.58 | 0.64 | 0.70 | 0.77 | 0.83 | 0.90 | 0.97 | 1.04 | 1.11 | 1.18 | 1.25 | 1.32 | 1.39 | 1.46 | 1.53 | 1.60 |
| 60    | 0.68 | 0.62         | 0.62 | 0.64 | 0.69 | 0.75 | 0.81 | 0.86 | 0.93 | 0.99 | 1.06 | 1.13 | 1.19 | 1.26 | 1.33 | 1.40 | 1.46 | 1.53 | 1.60 |
| 65    | 0.82 | 0.74         | 0.72 | 0.73 | 0.77 | 0.81 | 0.86 | 0.91 | 0.97 | 1.03 | 1.09 | 1.15 | 1.21 | 1.28 | 1.34 | 1.41 | 1.47 | 1.54 | 1.60 |
| 70    | 0.98 | 0.88         | 0.85 | 0.84 | 0.86 | 0.89 | 0.93 | 0.97 | 1.02 | 1.07 | 1.13 | 1.18 | 1.24 | 1.30 | 1.36 | 1.42 | 1.48 | 1.54 | 1.60 |
| 75    | 1.12 | 1.04         | 0.99 | 0.97 | 0.97 | 0.99 | 1.02 | 1.05 | 1.09 | 1.13 | 1.18 | 1.23 | 1.28 | 1.33 | 1.38 | 1.43 | 1.49 | 1.55 | 1.60 |
| 80    | 1.26 | 1.19         | 1.14 | 1.12 | 1.11 | 1.11 | 1.13 | 1.15 | 1.18 | 1.21 | 1.24 | 1.28 | 1.32 | 1.37 | 1.41 | 1.46 | 1.50 | 1.55 | 1.60 |
| 85    | 1.39 | 1.33         | 1.29 | 1.26 | 1.25 | 1.25 | 1.25 | 1.26 | 1.28 | 1.30 | 1.33 | 1.35 | 1.38 | 1.42 | 1.45 | 1.49 | 1.52 | 1.56 | 1.60 |
| 90    | 1.50 | 1.46         | 1.43 | 1.41 | 1.40 | 1.39 | 1.39 | 1.39 | 1.40 | 1.41 | 1.42 | 1.44 | 1.46 | 1.48 | 1.50 | 1.52 | 1.55 | 1.57 | 1.60 |
| 95    | 1.58 | 1.56         | 1.55 | 1.54 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.54 | 1.54 | 1.55 | 1.56 | 1.57 | 1.58 | 1.59 | 1.60 |
| 98    | 1.59 | 1.59         | 1.58 | 1.58 | 1.58 | 1.58 | 1.58 | 1.58 | 1.58 | 1.58 | 1.58 | 1.58 | 1.59 | 1.59 | 1.59 | 1.59 | 1.60 | 1.60 | 1.60 |

Harper & Baker, 2007

![](_page_37_Figure_0.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_0.jpeg)

# Groundwater Mounding

- Vertical infiltration
- Fill available porosity above water table or confining layer
- Recovers via lateral flow
- Area : Perimeter Ratio

![](_page_39_Figure_5.jpeg)

![](_page_40_Picture_0.jpeg)

## **Operation and Maintenance is Key**

"Another flaw in the human character is that everybody wants to build and nobody wants to do maintenance."

- Kurt Vonnegut
- Filters clog
- Plants die
- Sediment accumulates

![](_page_41_Picture_6.jpeg)

Operation & Maintenance of Stormwater Control Measures Denver, CO | November 6-9, 2017

![](_page_41_Picture_8.jpeg)

www

Operation & Maintenance of Stormwater Control Measures Minneapolis, Minnesota | August 4–7, 2019

CONTAC

A National Forum for O&M of Green and Gray Stormwater Infrastructure

### **Operation and Maintenance**

- Pre-treatment is a worthwhile investment
- Design can prevent excess O&M
- Recover retention storage in 72 h (ideally sooner)
- Consider the functions of the system
- Vegetation as an indicator of performance
- Water/debris lines
- Right solution to the wrong problem is not helpful

![](_page_42_Picture_8.jpeg)

### Low Impact Development Summary

- Conserve Natural Space
- Limit Impervious Cover
- Restore/Preserve Ecosystem Services to Landscape
- Manage Stormwater Close to Source
- Treatment Train
- Require Maintenance

# Questions?

Eban Z. Bean, Ph.D., P.E.

Assistant Professor & Extension Specialist

**Urban Water Resources Engineering** 

ezbean@ufl.edu

ezbean-lab.com

🍠 EbanBean

![](_page_44_Picture_7.jpeg)

![](_page_44_Picture_8.jpeg)

SUSTAINABLE HUMAN AND ECOLOGICAL DEVELOPMENT

![](_page_44_Picture_10.jpeg)

![](_page_44_Picture_11.jpeg)